Suppr超能文献

LDS-CNN:一种基于大规模药物筛选的用于药物-靶点相互作用预测的深度学习框架。

LDS-CNN: a deep learning framework for drug-target interactions prediction based on large-scale drug screening.

作者信息

Wang Yang, Zhang Zuxian, Piao Chenghong, Huang Ying, Zhang Yihan, Zhang Chi, Lu Yu-Jing, Liu Dongning

机构信息

School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, 510006 China.

School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 China.

出版信息

Health Inf Sci Syst. 2023 Sep 2;11(1):42. doi: 10.1007/s13755-023-00243-w. eCollection 2023 Dec.

Abstract

BACKGROUND

Drug-target interaction (DTI) is a vital drug design strategy that plays a significant role in many processes of complex diseases and cellular events. In the face of challenges such as extensive protein data and experimental costs, it is suggested to apply bioinformatics approaches to exploit potential interactions to design new targeted medications. Different data and interaction types bring difficulties to study involving incompatible and heterology formats. The analysis of drug-target interactions in a comprehensive and unified model is a significant challenge.

METHOD

Here, we propose a general method for predicting interactions between small-molecule drugs and protein targets, Large-scale Drug target Screening Convolutional Neural Network (LDS-CNN), which used unified encoding to achieve the calculation of the different data formats in an integrated model to realize feature abstraction and potential object prediction.

RESULT

On 898,412 interaction data involving 1683 small-molecule compounds and 14,350 human proteins from 8.8 billion records, the proposed method achieved an area under the curve (AUC) of 0.96, an area under the precision-recall curve (AUPRC) of 0.95, and an accuracy of 90.13%. The experimental results illustrated that the proposed method attained high accuracy on the test set, indicating its high predictive ability in drug-target interaction prediction. LDS-CNN is effective for the prediction of large-scale datasets and datasets composed of data with different formats.

CONCLUSION

In this study, we propose a DTI prediction method to solve the problems of unified encoding of large-scale data in multiple formats. It provides a feasible way to efficiently abstract the features among different types of drug-related data, thus reducing experimental costs and time consumption. The proposed method can be used to identify potential drug targets and candidates for the treatment of complex diseases. This work provides a reference for DTI to process large-scale data and different formats with deep learning methods and provides certain suggestions for future research.

摘要

背景

药物-靶点相互作用(DTI)是一种重要的药物设计策略,在许多复杂疾病过程和细胞事件中发挥着重要作用。面对蛋白质数据海量和实验成本高等挑战,建议应用生物信息学方法挖掘潜在相互作用以设计新型靶向药物。不同的数据和相互作用类型给涉及不兼容和异源格式的研究带来困难。在一个全面统一的模型中分析药物-靶点相互作用是一项重大挑战。

方法

在此,我们提出一种预测小分子药物与蛋白质靶点之间相互作用的通用方法,即大规模药物靶点筛选卷积神经网络(LDS-CNN),它使用统一编码在一个集成模型中实现对不同数据格式的计算,以实现特征提取和潜在对象预测。

结果

在所提出的方法中,在来自88亿条记录的涉及1683种小分子化合物和14350种人类蛋白质的898412条相互作用数据上,曲线下面积(AUC)达到0.96,精确率-召回率曲线下面积(AUPRC)为0.95,准确率为90.13%。实验结果表明,所提出的方法在测试集上达到了高精度,表明其在药物-靶点相互作用预测方面具有很高的预测能力。LDS-CNN对于大规模数据集以及由不同格式数据组成的数据集的预测是有效的。

结论

在本研究中,我们提出了一种DTI预测方法来解决多种格式大规模数据的统一编码问题。它提供了一种可行的方法来有效提取不同类型药物相关数据之间的特征,从而降低实验成本和时间消耗。所提出的方法可用于识别潜在的药物靶点和治疗复杂疾病的候选药物。这项工作为DTI利用深度学习方法处理大规模数据和不同格式提供了参考,并为未来研究提供了一定的建议。

相似文献

1
LDS-CNN: a deep learning framework for drug-target interactions prediction based on large-scale drug screening.
Health Inf Sci Syst. 2023 Sep 2;11(1):42. doi: 10.1007/s13755-023-00243-w. eCollection 2023 Dec.
2
Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding.
Curr Comput Aided Drug Des. 2024;20(6):1013-1024. doi: 10.2174/1573409919666230713142255.
3
GraphormerDTI: A graph transformer-based approach for drug-target interaction prediction.
Comput Biol Med. 2024 May;173:108339. doi: 10.1016/j.compbiomed.2024.108339. Epub 2024 Mar 18.
6
CNN-Siam: multimodal siamese CNN-based deep learning approach for drug‒drug interaction prediction.
BMC Bioinformatics. 2023 Mar 23;24(1):110. doi: 10.1186/s12859-023-05242-y.
7
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.
8
GSL-DTI: Graph structure learning network for Drug-Target interaction prediction.
Methods. 2024 Mar;223:136-145. doi: 10.1016/j.ymeth.2024.01.018. Epub 2024 Feb 14.
10
FRnet-DTI: Deep convolutional neural network for drug-target interaction prediction.
Heliyon. 2020 Mar 2;6(3):e03444. doi: 10.1016/j.heliyon.2020.e03444. eCollection 2020 Mar.

引用本文的文献

2
The importance of protein domain mutations in cancer therapy.
Heliyon. 2024 Mar 9;10(6):e27655. doi: 10.1016/j.heliyon.2024.e27655. eCollection 2024 Mar 30.

本文引用的文献

2
Computer-Aided Drug Design towards New Psychotropic and Neurological Drugs.
Molecules. 2023 Jan 30;28(3):1324. doi: 10.3390/molecules28031324.
3
Self- and cross-attention accurately predicts metabolite-protein interactions.
NAR Genom Bioinform. 2023 Jan 31;5(1):lqad008. doi: 10.1093/nargab/lqad008. eCollection 2023 Mar.
4
Amino acid motifs for the identification of novel protein interactants.
Comput Struct Biotechnol J. 2022 Dec 10;21:326-334. doi: 10.1016/j.csbj.2022.12.012. eCollection 2023.
6
FragDPI: a novel drug-protein interaction prediction model based on fragment understanding and unified coding.
Front Comput Sci (Berl). 2023;17(5):175903. doi: 10.1007/s11704-022-2163-9. Epub 2022 Dec 13.
9
PubChem 2023 update.
Nucleic Acids Res. 2023 Jan 6;51(D1):D1373-D1380. doi: 10.1093/nar/gkac956.
10
CoaDTI: multi-modal co-attention based framework for drug-target interaction annotation.
Brief Bioinform. 2022 Nov 19;23(6). doi: 10.1093/bib/bbac446.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验