Huang Zijian, Wu Zelin, Lai Suitian, Chen Xiabin, Liu Junjun
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P.R. China.
School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China.
J Chem Inf Model. 2025 Aug 25;65(16):8794-8805. doi: 10.1021/acs.jcim.5c01709. Epub 2025 Aug 13.
Human carboxylesterase 1 (hCES1), a crucial serine hydrolase, plays extensive roles in human metabolic processes. Its catalytic center exhibits structural similarities to cholinesterases (AChE and BChE) from the Type-B carboxylesterase/lipase family, featuring hallmark elements such as the catalytic triad and oxyanion hole. Previous studies on AChE and BChE have demonstrated that a protonated glutamate residue within the extended active site is essential for forming a water-centered hydrogen bond network that stabilizes the catalytic triad. However, the hydrogen bond network surrounding hCES1's catalytic triad is more complex, incorporating additional glutamate residues compared to cholinesterases. The protonation states of these glutamates and their precise roles in enzymatic catalysis remain unclear, necessitating further investigation. In this study, we systematically investigated the protonation states of key glutamate residues within hCES1's extended active site and their functional impacts using conventional molecular dynamics simulations, constant pH molecular dynamics simulations, and thermodynamic integration calculations. Our results reveal that protonation of E220 and E246 is critical for maintaining the stability of the water-centered hydrogen bond network, thereby stabilizing the catalytic triad and ensuring catalytic efficiency. Conversely, deprotonation of these residues induces electrostatic repulsion that disrupts the hydrogen bond network and disorders the catalytic triad. Moreover, structural analysis and sequence alignment indicate that this water-centered extended active site and its associated protonation pattern represent a conserved structural motif across the Type-B carboxylesterase/lipase family, rather than being unique to hCES1. These findings provide novel insights into the catalytic mechanism of hCES1 and establish a theoretical foundation for engineering serine hydrolases with analogous catalytic architectures.
人羧酸酯酶1(hCES1)是一种关键的丝氨酸水解酶,在人体代谢过程中发挥着广泛作用。其催化中心与B型羧酸酯酶/脂肪酶家族的胆碱酯酶(AChE和BChE)在结构上具有相似性,具有催化三联体和氧阴离子洞等标志性元件。先前对AChE和BChE的研究表明,延伸活性位点内质子化的谷氨酸残基对于形成以水为中心的氢键网络至关重要,该网络可稳定催化三联体。然而,hCES1催化三联体周围的氢键网络更为复杂,与胆碱酯酶相比,还包含额外的谷氨酸残基。这些谷氨酸的质子化状态及其在酶催化中的精确作用仍不清楚,需要进一步研究。在本研究中,我们使用传统分子动力学模拟、恒定pH分子动力学模拟和热力学积分计算,系统地研究了hCES1延伸活性位点内关键谷氨酸残基的质子化状态及其功能影响。我们的结果表明,E220和E246的质子化对于维持以水为中心的氢键网络的稳定性至关重要,从而稳定催化三联体并确保催化效率。相反,这些残基的去质子化会引发静电排斥,破坏氢键网络并使催化三联体紊乱。此外,结构分析和序列比对表明,这种以水为中心的延伸活性位点及其相关的质子化模式代表了B型羧酸酯酶/脂肪酶家族中保守的结构基序,而非hCES1所特有。这些发现为hCES1的催化机制提供了新的见解,并为设计具有类似催化结构的丝氨酸水解酶奠定了理论基础。