Suppr超能文献

关于任务转移和任务分担策略对管理患有多种疾病的个体有效性的全球证据:系统评价与荟萃分析。

Global evidence on the effectiveness of task-shifting and task-sharing strategies for managing individuals with multimorbidity: systematic review and meta-analysis.

作者信息

Gong Enying, Long Yutong, Tong Xunliang, Min Htike Wai Yan, Wang Jiahui, Ni Shiqi, Wang Yueqing, Wang Zijun, Yan Lijing L, Kane Sumit, Shao Ruitai, Li Yanming

机构信息

School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China

State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.

出版信息

Fam Med Community Health. 2025 Aug 12;13(3):e003390. doi: 10.1136/fmch-2025-003390.

Abstract

INTRODUCTION

Task-shifting and task-sharing strategies show promise for managing chronic diseases especially in low-income and middle-income countries (LMICs), though their effectiveness in multimorbidity management remains unclear. This study synthesised evidence on task-shifting and task-sharing strategies globally and assessed the impact on core health outcomes in multimorbidity management.

METHODS

We conducted a systematic review and meta-analysis of global studies evaluating task-shifting and sharing interventions for individuals with multimorbidity. Six databases, including PubMed, Embase, Web of Science, Ovid (Medline), CINAHL and Cochrane Library, were searched for studies reporting the core outcomes of multimorbidity management in quality of life, mortality, hospitalisation, emergency department visits and symptoms of depression and anxiety. Random-effects models were used to calculate pooled effect sizes with heterogeneity assessed through subgroup and meta-regression analyses.

RESULTS

From 8471 records, 36 studies from 14 countries were included, with only 5 conducted in LMICs. Twenty-one studies, encompassing 20 989 participants, were eligible for meta-analysis. More than half of the studies involved nurses as delegates, with some sharing the tasks with health professionals and about 10% of studies involved non-health professionals, including community healthcare workers as delegates to share the responsibility in caring for individuals with multimorbidity. Most studies were multicomponent, with 16.7% addressing all guideline-recommended aspects of multimorbidity management. By pooling the findings, task-shifting and task-sharing interventions were associated with a 27% reduction in mortality (OR: 0.73, 95% CI: 0.55 to 0.97, I²=0%), a modest improvement in quality of life (standardised mean difference (SMD): 0.1, 95% CI: 0.03 to 0.17, I²=47%) and reduced symptoms of depression (SMD: 0.27, 95% CI: -0.52 to -0.02, I²=90%), but showed no significant effect on hospitalisation, emergency visits or anxiety-related symptoms.

CONCLUSIONS

Some evidence, although limited in existing research, indicates the great potential of task-shifting and task-sharing strategies in supporting management of multimorbidity. Further research is needed to optimise and adopt these interventions, particularly in LMICs where evidence remains scarce.

PROSPERO REGISTRATION NUMBER

CRD42024526845.

摘要

引言

任务转移和任务分担策略有望用于慢性病管理,尤其是在低收入和中等收入国家(LMICs),但其在多重疾病管理中的有效性仍不明确。本研究综合了全球范围内关于任务转移和任务分担策略的证据,并评估了其对多重疾病管理中核心健康结果的影响。

方法

我们对评估针对患有多种疾病个体的任务转移和共享干预措施的全球研究进行了系统评价和荟萃分析。检索了六个数据库,包括PubMed、Embase、Web of Science、Ovid(Medline)、CINAHL和Cochrane图书馆,以查找报告多重疾病管理在生活质量、死亡率、住院、急诊就诊以及抑郁和焦虑症状等核心结果的研究。采用随机效应模型计算合并效应量,并通过亚组分析和meta回归分析评估异质性。

结果

从8471条记录中,纳入了来自14个国家的36项研究,其中只有5项在低收入和中等收入国家进行。21项研究,涵盖20989名参与者,符合荟萃分析的条件。超过一半的研究将护士作为代理人,有些研究将任务与卫生专业人员共享,约10%的研究涉及非卫生专业人员,包括社区医护人员作为代理人分担照顾患有多种疾病个体的责任。大多数研究是多组分的,16.7%的研究涉及多重疾病管理指南推荐的所有方面。通过汇总研究结果,任务转移和任务分担干预措施与死亡率降低27%相关(OR:0.73,95%CI:0.55至0.97,I² = 0%),生活质量有适度改善(标准化平均差(SMD):0.1,95%CI:0.03至0.17,I² = 47%),抑郁症状减轻(SMD:0.27,95%CI:-0.52至-0.02,I² = 90%),但对住院、急诊就诊或焦虑相关症状没有显著影响。

结论

现有研究虽证据有限,但一些证据表明任务转移和任务分担策略在支持多重疾病管理方面具有巨大潜力。需要进一步研究以优化和采用这些干预措施,特别是在证据仍然稀缺的低收入和中等收入国家。

PROSPERO注册号:CRD42024526845。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b9f/12352192/680c66d6b700/fmch-13-3-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验