Suppr超能文献

SSNA1自组装及其与微管结合以维持中心粒的结构见解。

Structural insights into SSNA1 self-assembly and its microtubule binding for centriole maintenance.

作者信息

Agostini Lorenzo, Pfister Jason A, Basnet Nirakar, Ding Jienyu, Zhang Rui, Biertümpfel Christian, O'Connell Kevin F, Mizuno Naoko

机构信息

Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD, 20892, USA.

Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, 20892, USA.

出版信息

Nat Commun. 2025 Aug 13;16(1):7512. doi: 10.1038/s41467-025-62696-9.

Abstract

SSNA1 is a fibrillar protein involved in dynamic microtubule remodeling, including nucleation, co-polymerization, and microtubule branching. The underlying molecular mechanism has remained unclear due to a lack of structural information. Here, we determine the cryo-EM structure of C.elegans SSNA-1 at 4.55-Å resolution and evaluate its role in embryonic development. We find that SSNA-1 forms an anti-parallel coiled-coil, with self-assembly facilitated by an overhang of 16 C-terminal residues that form a triple-stranded helical junction. The microtubule-binding region is within the triple-stranded junction, suggesting that self-assembly of SSNA-1 creates hubs for effective microtubule interaction. Genetical analysis elucidates that SSNA-1 deletion significantly reduces embryonic viability, and causes multipolar spindles during cell division. Interestingly, impairing SSNA-1 self-assembly has a comparable effect on embryonic viability as the knockout strain. Our study provides molecular insights into SSNA-1's self-assembly and its role in microtubule binding and cell division regulation through centriole stability.

摘要

SSNA1是一种纤维状蛋白,参与动态微管重塑,包括成核、共聚合和微管分支。由于缺乏结构信息,其潜在的分子机制仍不清楚。在这里,我们以4.55埃的分辨率确定了秀丽隐杆线虫SSNA-1的冷冻电镜结构,并评估了其在胚胎发育中的作用。我们发现SSNA-1形成了一个反平行卷曲螺旋结构,由16个C末端残基的突出端促进自组装,该突出端形成了一个三链螺旋连接。微管结合区域在三链连接内,这表明SSNA-1的自组装为有效的微管相互作用创造了中心。遗传学分析表明,SSNA-1缺失显著降低了胚胎活力,并在细胞分裂期间导致多极纺锤体。有趣的是,损害SSNA-1的自组装对胚胎活力的影响与基因敲除菌株相当。我们的研究为SSNA-1的自组装及其通过中心粒稳定性在微管结合和细胞分裂调控中的作用提供了分子见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验