Suppr超能文献

通过冷冻电子断层扫描可视化的秀丽隐杆线虫胚胎中心体的分子结构。

Molecular architectures of centrosomes in C. elegans embryos visualized by cryo-electron tomography.

作者信息

Tollervey Fergus, Rios Manolo U, Zagoriy Evgenia, Woodruff Jeffrey B, Mahamid Julia

机构信息

Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany.

Department of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Dev Cell. 2025 Mar 24;60(6):885-900.e5. doi: 10.1016/j.devcel.2024.12.002. Epub 2024 Dec 24.

Abstract

Centrosomes organize microtubules that are essential for mitotic divisions in animal cells. They consist of centrioles surrounded by pericentriolar material (PCM). Questions related to mechanisms of centriole assembly, PCM organization, and spindle microtubule formation remain unanswered, partly due to limited availability of molecular-resolution structural data inside cells. Here, we use cryo-electron tomography to visualize centrosomes across the cell cycle in cells isolated from C. elegans embryos. We describe a pseudo-timeline of centriole assembly and identify distinct structural features in both mother and daughter centrioles. We find that centrioles and PCM microtubules differ in protofilament number (13 versus 11), which could be explained by atypical γ-tubulin ring complexes with 11-fold symmetry identified at the minus ends of short PCM microtubule segments. We further characterize a porous and disordered network that forms the interconnected PCM. Thus, our work builds a three-dimensional structural atlas that helps explain how centrosomes assemble, grow, and achieve function.

摘要

中心体组织微管,而微管对于动物细胞的有丝分裂至关重要。它们由被中心粒周围物质(PCM)包围的中心粒组成。与中心粒组装机制、PCM组织和纺锤体微管形成相关的问题仍然没有答案,部分原因是细胞内分子分辨率结构数据的可用性有限。在这里,我们使用冷冻电子断层扫描来可视化从秀丽隐杆线虫胚胎中分离出的细胞在整个细胞周期中的中心体。我们描述了中心粒组装的假时间线,并确定了母中心粒和子中心粒中不同的结构特征。我们发现中心粒和PCM微管的原纤维数量不同(分别为13根和11根),这可以由在短PCM微管片段负端发现的具有11倍对称性的非典型γ-微管蛋白环复合物来解释。我们进一步表征了形成相互连接的PCM的多孔且无序的网络。因此,我们的工作构建了一个三维结构图谱,有助于解释中心体如何组装、生长并实现功能。

相似文献

1
Molecular architectures of centrosomes in C. elegans embryos visualized by cryo-electron tomography.
Dev Cell. 2025 Mar 24;60(6):885-900.e5. doi: 10.1016/j.devcel.2024.12.002. Epub 2024 Dec 24.
2
Native molecular architectures of centrosomes in embryos.
bioRxiv. 2024 Apr 3:2024.04.03.587742. doi: 10.1101/2024.04.03.587742.
3
The role of γ-tubulin in centrosomal microtubule organization.
PLoS One. 2012;7(1):e29795. doi: 10.1371/journal.pone.0029795. Epub 2012 Jan 10.
4
SART1 uniquely localizes to spindle poles forming a SART1 cap and promotes spindle pole assembly.
J Biol Chem. 2025 May 2;301(6):108561. doi: 10.1016/j.jbc.2025.108561.
7
PLK-1 suppresses centrosome maturation and microtubule polymerization to ensure faithful oocyte meiosis.
J Cell Biol. 2025 Sep 1;224(9). doi: 10.1083/jcb.202503080. Epub 2025 Jun 27.
9
Asymmetry of centrosomes in neural stem cells requires protein phosphatase 4.
Mol Biol Cell. 2025 May 1;36(5):ar58. doi: 10.1091/mbc.E25-01-0021. Epub 2025 Mar 12.
10

引用本文的文献

1
In situ cryo-electron microscopy and tomography of cellular and organismal samples.
Curr Opin Struct Biol. 2025 Aug;93:103076. doi: 10.1016/j.sbi.2025.103076. Epub 2025 Jun 4.
2
Accurate and fast segmentation of filaments and membranes in micrographs and tomograms with TARDIS.
bioRxiv. 2024 Dec 20:2024.12.19.629196. doi: 10.1101/2024.12.19.629196.

本文引用的文献

1
Partial closure of the γ-tubulin ring complex by CDK5RAP2 activates microtubule nucleation.
Dev Cell. 2024 Dec 2;59(23):3161-3174.e15. doi: 10.1016/j.devcel.2024.09.002. Epub 2024 Sep 24.
2
Structure of the native γ-tubulin ring complex capping spindle microtubules.
Nat Struct Mol Biol. 2024 Jul;31(7):1134-1144. doi: 10.1038/s41594-024-01281-y. Epub 2024 Apr 12.
3
γ-TuRC asymmetry induces local protofilament mismatch at the RanGTP-stimulated microtubule minus end.
EMBO J. 2024 May;43(10):2062-2085. doi: 10.1038/s44318-024-00087-4. Epub 2024 Apr 10.
4
Multivalent coiled-coil interactions enable full-scale centrosome assembly and strength.
J Cell Biol. 2024 Apr 1;223(4). doi: 10.1083/jcb.202306142. Epub 2024 Mar 8.
5
Transition of human γ-tubulin ring complex into a closed conformation during microtubule nucleation.
Science. 2024 Feb 23;383(6685):870-876. doi: 10.1126/science.adk6160. Epub 2024 Feb 2.
6
MAP9/MAPH-9 supports axonemal microtubule doublets and modulates motor movement.
Dev Cell. 2024 Jan 22;59(2):199-210.e11. doi: 10.1016/j.devcel.2023.12.001. Epub 2023 Dec 29.
7
Serial Lift-Out: sampling the molecular anatomy of whole organisms.
Nat Methods. 2024 Sep;21(9):1684-1692. doi: 10.1038/s41592-023-02113-5. Epub 2023 Dec 18.
8
A membrane reticulum, the centriculum, affects centrosome size and function in Caenorhabditis elegans.
Curr Biol. 2023 Mar 13;33(5):791-806.e7. doi: 10.1016/j.cub.2022.12.059. Epub 2023 Jan 23.
9
Convolutional networks for supervised mining of molecular patterns within cellular context.
Nat Methods. 2023 Feb;20(2):284-294. doi: 10.1038/s41592-022-01746-2. Epub 2023 Jan 23.
10
Visualizing translation dynamics at atomic detail inside a bacterial cell.
Nature. 2022 Oct;610(7930):205-211. doi: 10.1038/s41586-022-05255-2. Epub 2022 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验