Suleimenova Diana, Tashenov Yerbolat, Ibrayeva Ayagoz, O'Reilly Robert J, Baptayev Bakhytzhan, Balanay Mannix P
National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
Department of Chemistry,, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan.
Sci Rep. 2025 Aug 13;15(1):29723. doi: 10.1038/s41598-025-14954-5.
This study investigates the electrocatalytic performance of binary MnO/NiS and ternary MWCNT@MnO/NiS composites as platinum (Pt) free counter electrodes (CEs) for triiodide reduction in dye sensitized solar cells (DSSCs). The MnO and NiS components form mixed phase structures, MnO/Mn₃O₄ and NiS/Ni₃S₄, respectively, while multiwalled carbon nanotubes (MWCNTs) function as a conductive scaffold to enhance charge transport. The composites were synthesized via a solvothermal method and thoroughly characterized using a combination of structural and electrochemical techniques. Both MnO/NiS and MWCNT@MnO/NiS electrodes demonstrated significantly lower charge transfer resistance than the conventional Pt CE, indicating superior catalytic activity. When integrated into DSSCs, the MnO/NiS and MWCNT@MnO/NiS electrodes achieved power conversion efficiencies (PCEs) of 8.66% and 9.29%, respectively, surpassing that of the Pt based device (8.54%) under identical testing conditions. The enhanced performance is attributed to the synergistic effects between the redox active mixed metal phases and the high conductivity and surface area of MWCNTs. Additionally, the devices exhibited excellent long term operational stability, underscoring the potential of these composite materials as cost effective and durable alternatives to noble metal CEs in next generation solar energy systems.
本研究考察了二元MnO/NiS和三元MWCNT@MnO/NiS复合材料作为无铂对电极(CE)在染料敏化太阳能电池(DSSC)中用于碘化物还原的电催化性能。MnO和NiS组分分别形成混合相结构MnO/Mn₃O₄和NiS/Ni₃S₄,而多壁碳纳米管(MWCNT)作为导电支架以增强电荷传输。通过溶剂热法合成了这些复合材料,并结合结构和电化学技术对其进行了全面表征。MnO/NiS和MWCNT@MnO/NiS电极的电荷转移电阻均显著低于传统的铂对电极,表明具有优异的催化活性。当集成到DSSC中时,MnO/NiS和MWCNT@MnO/NiS电极在相同测试条件下的功率转换效率(PCE)分别达到8.66%和9.29%,超过了基于铂的器件(8.54%)。性能的提高归因于氧化还原活性混合金属相之间的协同效应以及MWCNT的高导电性和高表面积。此外,这些器件表现出优异的长期运行稳定性,突出了这些复合材料在下一代太阳能系统中作为贵金属对电极的经济高效且耐用替代品的潜力。