文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过深度学习解析精神分裂症中与临床严重程度和认知表型相关的共享和独特的大脑功能变化。

Disentangling shared and unique brain functional changes associated with clinical severity and cognitive phenotypes in schizophrenia via deep learning.

作者信息

Xia Jing, Chan Yi Hao, Girish Deepank, Chew Qian Hui, Sim Kang, Rajapakse Jagath C

机构信息

College of Computing and Data Science, Nanyang Technological University, Singapore, Singapore.

Research Division, Institute of Mental Health (IMH), Singapore, Singapore.

出版信息

Commun Biol. 2025 Aug 13;8(1):1215. doi: 10.1038/s42003-025-08637-0.


DOI:10.1038/s42003-025-08637-0
PMID:40804294
Abstract

Individuals with schizophrenia experience significant cognitive impairments and alterations in brain function. However, the shared and unique brain functional patterns underlying cognition deficits and symptom severity in schizophrenia remain poorly understood. We design an interpretable graph-based multi-task deep learning framework to enhance the simultaneous prediction of schizophrenia illness severity and cognitive functioning measurements by using functional connectivity, and identify both shared and unique brain patterns associated with these phenotypes on 378 subjects from three datasets. Our framework outperforms both single-task and state-of-the-art multi-task learning methods in predicting four Positive and Negative Syndrome Scale (PANSS) subscales and four cognitive domain scores. The performance is replicable across three datasets, and the shared and unique functional changes are confirmed by meta-analysis at both regional and modular levels. Our study provides insights into the neural correlates of illness severity and cognitive implications, offering potential targets for further evaluations of treatment effects and longitudinal follow-up.

摘要

精神分裂症患者存在显著的认知障碍和脑功能改变。然而,精神分裂症中认知缺陷和症状严重程度背后的共同和独特脑功能模式仍知之甚少。我们设计了一个基于可解释图的多任务深度学习框架,通过使用功能连接来增强对精神分裂症疾病严重程度和认知功能测量的同时预测,并在来自三个数据集的378名受试者中识别与这些表型相关的共同和独特脑模式。我们的框架在预测四个阳性和阴性症状量表(PANSS)子量表和四个认知领域得分方面优于单任务和最先进的多任务学习方法。该性能在三个数据集上均可重复,并且通过区域和模块水平的荟萃分析证实了共同和独特的功能变化。我们的研究为疾病严重程度的神经相关性和认知影响提供了见解,为进一步评估治疗效果和纵向随访提供了潜在靶点。

相似文献

[1]
Disentangling shared and unique brain functional changes associated with clinical severity and cognitive phenotypes in schizophrenia via deep learning.

Commun Biol. 2025-8-13

[2]
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.

J Prev Alzheimers Dis. 2025-5

[3]
Schizophrenia detection from electroencephalogram signals using image encoding and wrapper-based deep feature selection approach.

Sci Rep. 2025-7-1

[4]
Development and Validation of a Brain Aging Biomarker in Middle-Aged and Older Adults: Deep Learning Approach.

JMIR Aging. 2025-8-1

[5]
Improved patient identification by incorporating symptom severity in deep learning using neuroanatomic images in first episode schizophrenia.

Neuropsychopharmacology. 2025-2

[6]
Selective noradrenaline reuptake inhibitors for schizophrenia.

Cochrane Database Syst Rev. 2018-1-25

[7]
Multivariate Association Between Functional Connectivity Gradients and Cognition in Schizophrenia Spectrum Disorders.

Biol Psychiatry Cogn Neurosci Neuroimaging. 2024-9-10

[8]
Metformin-improved cognitive impairment in patients with schizophrenia is correlated with activation of tricarboxylic acid cycle and restored functional connectivity of hippocampus.

BMC Med. 2025-7-1

[9]
Imaging-genomic spatial-modality attentive fusion for studying neuropsychiatric disorders.

Hum Brain Mapp. 2024-12-1

[10]
A Method for Estimating Dynamic Functional Network Connectivity Gradients (dFNGs) From ICA Captures Smooth Inter-Network Modulation.

Hum Brain Mapp. 2025-7

本文引用的文献

[1]
Identification of functional dynamic brain states based on graph attention networks.

Neuroimage. 2025-5-1

[2]
Graph Foundation Models: Concepts, Opportunities and Challenges.

IEEE Trans Pattern Anal Mach Intell. 2025-6

[3]
Interpretable modality-specific and interactive graph convolutional network on brain functional and structural connectomes.

Med Image Anal. 2025-5

[4]
Neuroimage Analysis Methods and Artificial Intelligence Techniques for Reliable Biomarkers and Accurate Diagnosis of Schizophrenia: Achievements Made by Chinese Scholars Around the Past Decade.

Schizophr Bull. 2025-3-14

[5]
Neuroimaging features of cognitive impairments in schizophrenia and major depressive disorder.

Ther Adv Psychopharmacol. 2024-5-4

[6]
Interpretable Cognitive Ability Prediction: A Comprehensive Gated Graph Transformer Framework for Analyzing Functional Brain Networks.

IEEE Trans Med Imaging. 2024-4

[7]
Elucidating salient site-specific functional connectivity features and site-invariant biomarkers in schizophrenia via deep neural networks.

Sci Rep. 2023-11-29

[8]
Graph convolutional networks: a comprehensive review.

Comput Soc Netw. 2019

[9]
Multi-level and joint attention networks on brain functional connectivity for cross-cognitive prediction.

Med Image Anal. 2023-12

[10]
Changes in patterns of age-related network connectivity are associated with risk for schizophrenia.

Proc Natl Acad Sci U S A. 2023-8-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索