Ahmmad Jabbar, Khan Meraj Ali, Aldayel Ibrahim, Mahmood Tahir
Department of Mathematics and Statistics, International Islamic University Islamabad, Islamabad, Pakistan.
Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11566, Saudi Arabia.
Sci Rep. 2025 Aug 13;15(1):29645. doi: 10.1038/s41598-025-12296-w.
Tracking the development of disability conditions presents significant challenges due to uncertainty, imprecision, and dynamic health progression patterns. Traditional multi-criteria decision-making (MCDM) techniques often struggle with such complex and fuzzy medical data. To address this gap, we propose a novel classification framework based on Tamir's complex fuzzy Aczel-Alsina weighted aggregated sum product assessment (WASPAS) approach. This hybrid model incorporates complex fuzzy logic to handle multidimensional uncertainty and utilizes the Aczel-Alsina function for flexible aggregation. We apply this method to evaluate and classify AI-powered predictive models used for monitoring disability progression. The proposed framework not only improves classification accuracy but also enhances decision support in healthcare planning. A case study validates the robustness, sensitivity, and effectiveness of the proposed method in real-world disability tracking scenarios.
由于存在不确定性、不精确性以及动态的健康进展模式,追踪残疾状况的发展面临重大挑战。传统的多标准决策(MCDM)技术常常难以处理如此复杂且模糊的医学数据。为了弥补这一差距,我们提出了一种基于塔米尔的复杂模糊阿采尔 - 阿尔西纳加权聚合和积评估(WASPAS)方法的新型分类框架。这种混合模型结合了复杂模糊逻辑来处理多维不确定性,并利用阿采尔 - 阿尔西纳函数进行灵活聚合。我们应用此方法来评估和分类用于监测残疾进展的人工智能驱动的预测模型。所提出的框架不仅提高了分类准确性,还增强了医疗保健规划中的决策支持。一个案例研究验证了所提出方法在实际残疾追踪场景中的稳健性、敏感性和有效性。