Suppr超能文献

使用离心机和粒子图像测速技术对软土地基开挖中隧道效应减缓和变形的试验研究

Experimental study of tunnel effects on deformation mitigation in soft clay excavation using centrifuge and PIV.

作者信息

Rui Yi, Zhang Xin, Xue Yanyi, Ren Zengle

机构信息

Department of Geotechnical Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.

Centre for Smart Infrastructure and Construction, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.

出版信息

Sci Rep. 2025 Aug 13;15(1):29710. doi: 10.1038/s41598-025-14732-3.

Abstract

In soft clay, deep excavations adjacent to tunnels cause complex soil-structure interactions. We conducted centrifuge tests with Particle Image Velocimetry (PIV) to simulate a staged deep-pit excavation near a model tunnel. A scaled retaining wall and tunnel lining were instrumented in a strongbox; the soil was consolidated and excavated in four stages under 60 g. PIV tracked soil and structure displacements while pore-pressure sensors recorded stresses. Tunnel position (beside vs. below the pit) and lining stiffness were varied to isolate their effects. The results reveal a shielding effect: the tunnel acts as a rigid strut that redistributes stresses and mitigates excavation-induced settlement. Surface settlement and retaining-wall deflection were lower than in a no-tunnel case. This shielding depends on tunnel stiffness and proximity: a stiffer tunnel provides greater soil restraint, whereas a flexible lining allows more movement. A tunnel close to the excavation (within roughly one to two pit depths) bears higher internal load but yields the largest reduction of far-field displacement. PIV shows soil arching: settlement above the tunnel is reduced, while heave develops at the pit base. Three characteristic uplift patterns emerge: a symmetric "hill", a central "groove", and an asymmetric "triangle" toward the tunnel. These patterns reflect how soil arching is altered by the adjacent tunnel and wall. We define a critical interaction depth where the tunnel's role shifts from passive inclusion to an active structural element. When the tunnel lies in this vertical zone near the pit bottom, it markedly alters stress paths and uplift geometry. By highlighting the tunnel's dual role-reducing wall deformation while sustaining higher internal stress-and by categorizing uplift shapes and the depth threshold of interaction, this study advances understanding of tunnel-excavation interaction. These contributions (quantified shielding metrics, uplift-pattern classification, and the critical-depth concept) provide a basis for design and deformation prediction in deep excavations near tunnels.

摘要

在软土地层中,隧道附近的深基坑开挖会引发复杂的土-结构相互作用。我们采用粒子图像测速技术(PIV)进行了离心机试验,以模拟模型隧道附近的分阶段深基坑开挖。在一个坚固的箱子中安装了比例缩放的挡土墙和隧道衬砌;土体在60g的加速度下进行固结,并分四个阶段进行开挖。PIV用于跟踪土体和结构的位移,同时孔隙压力传感器记录应力。改变隧道的位置(在基坑旁边与在基坑下方)和衬砌刚度,以分离它们的影响。结果揭示了一种屏蔽效应:隧道起到刚性支撑的作用,重新分配应力并减轻开挖引起的沉降。地表沉降和挡土墙位移比没有隧道的情况要小。这种屏蔽效应取决于隧道的刚度和距离:刚度较大的隧道对土体的约束作用更大,而柔性衬砌允许更多的位移。靠近开挖处(大约在一到两个基坑深度范围内)的隧道承受更高的内部荷载,但能使远场位移的减小幅度最大。PIV显示出土体拱效应:隧道上方的沉降减小,而基坑底部出现隆起。出现了三种典型的隆起模式:对称的“山丘”形、中央“凹槽”形以及朝向隧道的不对称“三角形”。这些模式反映了相邻隧道和墙体如何改变土体拱效应。我们定义了一个临界相互作用深度,在该深度处隧道的作用从被动包含转变为主动结构构件。当隧道位于基坑底部附近的这个垂直区域时,它会显著改变应力路径和隆起几何形状。通过突出隧道在减少墙体变形同时承受更高内部应力的双重作用,以及对隆起形状和相互作用深度阈值进行分类,本研究增进了对隧道-开挖相互作用的理解。这些贡献(量化的屏蔽指标、隆起模式分类和临界深度概念)为隧道附近深基坑开挖的设计和变形预测提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a946/12350771/434b9856d938/41598_2025_14732_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验