Varma Tanmaykumar, Kamble Pradnya, Rajkumar R, Garg Prabha
Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
Mol Divers. 2025 Aug 13. doi: 10.1007/s11030-025-11320-5.
Glycogen synthase kinase 3 beta (GSK3β) is a pivotal serine/threonine kinase implicated in diverse pathological conditions, making it a compelling target for therapeutic intervention. In this study, we employed a structure-based drug discovery approach to identify novel ATP-competitive GSK3β inhibitors through a multi-tiered computational framework. Reported inhibitors from various repositories were systematically analysed to establish physicochemical and interaction-based filters, facilitating the rational curation of screening candidates. Toxicity assessment via Derek Nexus further refined the selection, yielding seven lead compounds with optimal docking scores, robust interaction profiles, and adherence to drug-likeness criteria. Molecular dynamics simulations over 300 ns validated the stability of protein-ligand complexes with root mean square deviation, radius of gyration, and binding free energy calculations, substantiating sustained interactions. Key residues, including Lys85, Asp133, and Val135, were identified as critical for ligand stabilisation, corroborating reported inhibitor-binding mechanisms. Additionally, a deep learning based prediction model, GSK3BPred, was developed to classify potential GSK3β inhibitors. The GSK3BPred model is publicly available at https://github.com/PGlab-NIPER/GSK3BPred.git . This integrative computational strategy offers valuable insights into the discovery of novel ATP-competitive GSK3β inhibitors and lays a foundation for future experimental validation and optimization.
糖原合酶激酶3β(GSK3β)是一种关键的丝氨酸/苏氨酸激酶,涉及多种病理状况,使其成为治疗干预的一个极具吸引力的靶点。在本研究中,我们采用基于结构的药物发现方法,通过一个多层计算框架来识别新型ATP竞争性GSK3β抑制剂。对来自各种数据库的已报道抑制剂进行了系统分析,以建立基于物理化学和相互作用的筛选标准,便于合理筛选候选物。通过Derek Nexus进行的毒性评估进一步优化了选择,产生了七种先导化合物,它们具有最佳的对接分数、强大的相互作用谱,并符合类药标准。超过300纳秒的分子动力学模拟通过均方根偏差、回转半径和结合自由能计算验证了蛋白质-配体复合物的稳定性,证实了持续的相互作用。关键残基,包括Lys85、Asp133和Val135,被确定为对配体稳定至关重要,证实了已报道的抑制剂结合机制。此外,还开发了一种基于深度学习的预测模型GSK3BPred,用于对潜在的GSK3β抑制剂进行分类。GSK3BPred模型可在https://github.com/PGlab-NIPER/GSK3BPred.git上公开获取。这种综合计算策略为发现新型ATP竞争性GSK3β抑制剂提供了有价值的见解,并为未来的实验验证和优化奠定了基础。