Suppr超能文献

通过机器学习驱动的定量构效关系和天然化合物虚拟筛选阐明青蒿素作为神经退行性疾病的有效糖原合成酶激酶3β抑制剂。

Elucidation of Artemisinin as a Potent GSK3β Inhibitor for Neurodegenerative Disorders via Machine Learning-Driven QSAR and Virtual Screening of Natural Compounds.

作者信息

Alhassan Hassan H, Surti Malvi, Adnan Mohd, Patel Mitesh

机构信息

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Al-Jouf Region, Saudi Arabia.

King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia.

出版信息

Pharmaceuticals (Basel). 2025 May 31;18(6):826. doi: 10.3390/ph18060826.

Abstract

Glycogen synthase kinase-3 beta (GSK3β) is a key enzyme involved in neurodegenerative diseases such as Alzheimer's and Parkinson's, contributing to tau hyperphosphorylation, amyloid-beta (Aβ) aggregation, and neuronal dysfunction. : This study applied a machine learning-driven virtual screening approach to identify potent natural inhibitors of GSK3β. A dataset of 3092 natural compounds was analyzed using Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN), with feature selection focusing on key molecular descriptors, including lipophilicity (ALogP: -0.5 to 5.0), hydrogen bond acceptors (0-10), and McGowan volume (0.5-2.5). RF outperformed SVM and KNN, achieving the highest test accuracy (83.6%), specificity (87%), and lowest RMSE (0.3214). : Virtual screening using AutoDock Vina and molecular dynamics simulations (100 ns, GROMACS 2022) identified artemisinin as the top GSK3β inhibitor, with a binding affinity of -8.6 kcal/mol, interacting with key residues ASP200, CYS199, and LEU188. Dihydroartemisinin exhibited a binding affinity of -8.3 kcal/mol, reinforcing its neuroprotective potential. Pharmacokinetic predictions confirmed favorable drug-likeness (TPSA: 26.3-70.67 Å) and non-toxicity. : While these findings highlight artemisinin-based inhibitors as promising candidates, experimental validation and structural optimization are needed for clinical application. This study demonstrates the effectiveness of machine learning and computational screening in accelerating neurodegenerative drug discovery.

摘要

糖原合酶激酶-3β(GSK3β)是一种参与阿尔茨海默病和帕金森病等神经退行性疾病的关键酶,它会导致tau蛋白过度磷酸化、β淀粉样蛋白(Aβ)聚集以及神经元功能障碍。本研究采用机器学习驱动的虚拟筛选方法来识别GSK3β的有效天然抑制剂。使用支持向量机(SVM)、随机森林(RF)和K近邻算法(KNN)分析了一个包含3092种天然化合物的数据集,特征选择聚焦于关键分子描述符,包括亲脂性(ALOGP:-0.5至5.0)、氢键受体数量(0至10)和麦高恩体积(0.5至2.5)。RF的表现优于SVM和KNN,实现了最高的测试准确率(83.6%)、特异性(87%)和最低的均方根误差(RMSE,0.3214)。使用AutoDock Vina进行虚拟筛选和分子动力学模拟(100纳秒,GROMACS 2022)确定青蒿素为最佳GSK3β抑制剂,其结合亲和力为-8.6千卡/摩尔,与关键残基ASP200、CYS199和LEU188相互作用。双氢青蒿素的结合亲和力为-8.3千卡/摩尔,增强了其神经保护潜力。药代动力学预测证实了其良好的类药性(拓扑极性表面积:26.3至70.67 Å)和无毒性。虽然这些发现突出了基于青蒿素的抑制剂作为有前景的候选药物,但临床应用还需要进行实验验证和结构优化。本研究证明了机器学习和计算筛选在加速神经退行性疾病药物发现方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af15/12196423/864d9ee055b3/pharmaceuticals-18-00826-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验