Sarma Suryakamal, Jain Nishita, Bansal Love, Vishwakarma Ravindra, Prasun Aditya, Sahu Tarun Kumar, Kumar Rajesh, Sarma Tridib K
Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
ACS Appl Mater Interfaces. 2025 Aug 27;17(34):48532-48546. doi: 10.1021/acsami.5c08151. Epub 2025 Aug 13.
Conductive polymer hydrogels combine the electrical conductivity of organic polymers with the high water content, porosity, and tissue-mimicking properties of hydrogels, making them ideal for bioelectronic interfaces. However, traditional polymer matrices often lack biocompatibility, self-healing ability, dynamic reconfigurability, and tunable mechanical properties. To address these challenges, herein we report a dimeric guanosine monophosphate (GMP)-based supramolecular hydrogel that self-assembles into a fibrillar network with intrinsic peroxidase-mimetic activity in a metal-free, microconfined environment. This unique catalytic property enables the in situ oxidative polymerization of aniline into polyaniline nanofibers, forming a hybrid conductive hydrogel with excellent mechanical strength, self-healing capability, stimuli-responsive sol-gel transitions, and high ionic conductivity. The resulting hydrogel was used to fabricate electrochromic energy-storing electrodes and "all-solid-state" supercapacitors with high capacitance (343 mF cm) and energy density (93.36 Wh cm). This work highlights the potential of small biomolecules as artificial enzyme mimics and structural matrices for transforming biomolecular self-assemblies into functionally conductive hydrogels. The integration of biomolecules for enzyme-mimetic catalysis for generating the conducting polymer hydrogels might provide a versatile platform for advancing bioelectronic technologies.
导电聚合物水凝胶将有机聚合物的导电性与水凝胶的高含水量、孔隙率和组织模拟特性结合在一起,使其成为生物电子界面的理想材料。然而,传统的聚合物基质往往缺乏生物相容性、自我修复能力、动态可重构性和可调机械性能。为应对这些挑战,我们在此报告一种基于二聚鸟苷单磷酸(GMP)的超分子水凝胶,它在无金属的微受限环境中自组装成具有内在过氧化物酶模拟活性的纤维状网络。这种独特的催化特性使得苯胺能够原位氧化聚合成聚苯胺纳米纤维,形成一种具有优异机械强度、自我修复能力、刺激响应性溶胶-凝胶转变和高离子导电性的混合导电水凝胶。所得水凝胶用于制造具有高电容(343 mF/cm²)和能量密度(93.36 Wh/cm³)的电致变色储能电极和“全固态”超级电容器。这项工作突出了小生物分子作为人工酶模拟物和结构基质将生物分子自组装转变为功能导电水凝胶的潜力。整合生物分子进行模拟酶催化以生成导电聚合物水凝胶可能为推进生物电子技术提供一个通用平台。