Suppr超能文献

ES-UNet:通过在3D UNet中增强跳跃连接实现高效的3D医学图像分割

ES-UNet: efficient 3D medical image segmentation with enhanced skip connections in 3D UNet.

作者信息

Park Minyoung, Oh Seungtaek, Park Junyoung, Jeong Taikyeong, Yu Sungwook

机构信息

School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea.

School of Artificial Intelligence Convergence, Hallym University, 1 Hallymdaehak-Gil, Chuncheon, 24252, Republic of Korea.

出版信息

BMC Med Imaging. 2025 Aug 13;25(1):327. doi: 10.1186/s12880-025-01857-0.

Abstract

BACKGROUND

Deep learning has significantly advanced medical image analysis, particularly in semantic segmentation, which is essential for clinical decisions. However, existing 3D segmentation models, like the traditional 3D UNet, face challenges in balancing computational efficiency and accuracy when processing volumetric medical data. This study aims to develop an improved architecture for 3D medical image segmentation with enhanced learning strategies to improve accuracy and address challenges related to limited training data.

METHODS

We propose ES-UNet, a 3D segmentation architecture that achieves superior segmentation performance while offering competitive efficiency across multiple computational metrics, including memory usage, inference time, and parameter count. The model builds upon the full-scale skip connection design of UNet3+ by integrating channel attention modules into each encoder-to-decoder path and incorporating full-scale deep supervision to enhance multi-resolution feature learning. We further introduce Region Specific Scaling (RSS), a data augmentation method that adaptively applies geometric transformations to annotated regions, and a Dynamically Weighted Dice (DWD) loss to improve the balance between precision and recall. The model was evaluated on the MICCAI HECKTOR dataset, and additional validation was conducted on selected tasks from the Medical Segmentation Decathlon (MSD).

RESULTS

On the HECKTOR dataset, ES-UNet achieved a Dice Similarity Coefficient (DSC) of 76.87%, outperforming baseline models including 3D UNet, 3D UNet 3+, nnUNet, and Swin UNETR. Ablation studies showed that RSS and DWD contributed up to 1.22% and 1.06% improvement in DSC, respectively. A sensitivity analysis demonstrated that the chosen scaling range in RSS offered a favorable trade-off between deformation and anatomical plausibility. Cross-dataset evaluation on MSD Heart and Spleen tasks also indicated strong generalization. Computational analysis revealed that ES-UNet achieves superior segmentation performance with moderate computational demands. Specifically, the enhanced skip connection design with lightweight channel attention modules integrated throughout the network architecture enables this favorable balance between high segmentation accuracy and computational efficiency.

CONCLUSION

ES-UNet integrates architectural and algorithmic improvements to achieve robust 3D medical image segmentation. While the framework incorporates established components, its core contributions lie in the optimized skip connection strategy and supporting techniques like RSS and DWD. Future work will explore adaptive scaling strategies and broader validation across diverse imaging modalities.

摘要

背景

深度学习极大地推动了医学图像分析的发展,尤其是在语义分割方面,这对临床决策至关重要。然而,现有的3D分割模型,如传统的3D UNet,在处理体积医学数据时,在平衡计算效率和准确性方面面临挑战。本研究旨在开发一种改进的3D医学图像分割架构,采用增强的学习策略来提高准确性,并应对与有限训练数据相关的挑战。

方法

我们提出了ES-UNet,这是一种3D分割架构,在包括内存使用、推理时间和参数数量在内的多个计算指标上,实现了卓越的分割性能,同时具有竞争力的效率。该模型基于UNet3+的全尺度跳跃连接设计,通过将通道注意力模块集成到每个编码器到解码器的路径中,并引入全尺度深度监督来增强多分辨率特征学习。我们进一步引入了区域特定缩放(RSS),这是一种数据增强方法,可将几何变换自适应地应用于标注区域,以及动态加权骰子(DWD)损失,以改善精度和召回率之间的平衡。该模型在MICCAI HECKTOR数据集上进行了评估,并在医学分割十项全能(MSD)的选定任务上进行了额外验证。

结果

在HECKTOR数据集上,ES-UNet的骰子相似系数(DSC)达到了76.87%,优于包括3D UNet、3D UNet 3+、nnUNet和Swin UNETR在内的基线模型。消融研究表明,RSS和DWD分别使DSC提高了1.22%和1.06%。敏感性分析表明,RSS中选择的缩放范围在变形和解剖合理性之间提供了良好的权衡。对MSD心脏和脾脏任务的跨数据集评估也表明了很强的泛化能力。计算分析表明,ES-UNet在适度的计算需求下实现了卓越的分割性能。具体而言,通过在整个网络架构中集成轻量级通道注意力模块的增强跳跃连接设计,在高分割精度和计算效率之间实现了这种良好的平衡。

结论

ES-UNet整合了架构和算法改进,以实现强大的3D医学图像分割。虽然该框架包含了已有的组件,但其核心贡献在于优化的跳跃连接策略以及RSS和DWD等支持技术。未来的工作将探索自适应缩放策略,并在不同成像模态上进行更广泛的验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b5f/12351991/67c18e7cb629/12880_2025_1857_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验