用于腹部合成计算机断层扫描生成的生成对抗网络架构的全面比较研究。
A comprehensive comparative study of generative adversarial network architectures for synthetic computed tomography generation in the abdomen.
作者信息
Lapaeva Mariia, La Greca Saint-Esteven Agustina, Wallimann Philipp, Andratschke Nicolaus, Guckenberger Matthias, Günther Manuel, Tanadini-Lang Stephanie, Dal Bello Riccardo
机构信息
Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
Artificial Intelligence and Machine Learning Group, Department of Informatics, University of Zurich, Zurich, Switzerland.
出版信息
Med Phys. 2025 Aug;52(8):e18038. doi: 10.1002/mp.18038.
BACKGROUND
Magnetic Resonance (MR)-based synthetic Computed Tomography (sCT) generation is an emerging promising technique, required for the transition from conventional planning workflows to MR-only radiotherapy planning. This shift aims to replace CT acquisition with a sCT improving both cost efficiency and burden to the patient. Generative Adversarial Networks (GANs) have shown some of the best performance in this area.
PURPOSE
This study aims to identify optimal approaches to improve the quality and clinical applicability of MR-based sCT generation for treatment planning by performing an extensive comparison of GAN architectures and parameters thereof. It focuses on the abdominal region, which still lacks certified medical products for sCT generation.
METHODS
In order to improve the current state of deep learning technologies, we generated sCTs based on abdominal MR images of 154 cancer patients using GANs, varying the following parameters: (1) generator architectures (U-Net, ResNet); (2) GAN architectures trained in paired (Pix2Pix) and unpaired fashion (CycleGAN and CUT); (3) number of input-output channels (2D, 2.5D); (4) training set size. The quality of sCT generation was assessed by using both image similarity and dosimetric metrics; correlation between the two was evaluated. The dosimetric accuracy was evaluated through an automated process that compared the dose distributions of photon treatment plans calculated on sCT and CT images, using Dose-Volume Histogram (DVH) parameters for tumor and organs at risk.
RESULTS
The Pix2Pix model, trained in paired fashion with 2.5D input-output channels and a ResNet generator emerged as the best-performing model, achieving a mean absolute error (MAE, mean) of 63.21 HU, a planning target volume Dmean difference of -0.09%, and no outliers above 2% for other DVH parameters. This configuration addressed prior challenges of Pix2Pix with bone and rigid organ boundary generation, delivering robust results even for cases with significant air pockets. The 2D input-output channel configuration showed beneficial for GANs trained in unpaired fashion, achieving a mean MAE of 66.97 HU for CycleGAN and 69.49 HU for CUT. Both delivered clinically applicable results, with mean DVH discrepancies below 0.8%. Expanding the training set size was essential for minimizing outliers in dosimetric parameters. High correlation was observed between the image similarity metrics-MAE, MAE bones, structural similarity index measure-and target DVH parameters, with Pearson coefficients ranging from 0.77 to 0.9. However, within the clinically relevant range of DVH deviations (± 2%), stochastic variations obscured linear trends.
CONCLUSIONS
The study provided a new benchmark for the abdominal sCT generation task, showing its clinical applicability for treatment planning and further advancing the state-of-the-art. This study also confirmed that image similarity metrics alone can not reliably predict small dosimetric deviations within a clinical threshold; but contributed by identifying specific metrics that correlate with DVH discrepancies above ± 5%, offering valuable tools for training, evaluation, and standardization of reporting across studies.
背景
基于磁共振(MR)的合成计算机断层扫描(sCT)生成是一种新兴的有前途的技术,是从传统放疗计划工作流程向仅基于MR的放疗计划转变所必需的。这种转变旨在用sCT取代CT扫描,以提高成本效益并减轻患者负担。生成对抗网络(GAN)在这一领域已展现出一些最佳性能。
目的
本研究旨在通过对GAN架构及其参数进行广泛比较,确定提高基于MR的sCT生成用于治疗计划的质量和临床适用性的最佳方法。研究聚焦于腹部区域,该区域仍缺乏用于sCT生成的经认证的医疗产品。
方法
为了改进深度学习技术的当前状态,我们使用GAN基于154例癌症患者的腹部MR图像生成sCT,改变以下参数:(1)生成器架构(U-Net、ResNet);(2)以配对方式(Pix2Pix)和非配对方式(CycleGAN和CUT)训练的GAN架构;(3)输入-输出通道数量(2D、2.5D);(4)训练集大小。通过使用图像相似度和剂量学指标评估sCT生成的质量;评估两者之间的相关性。通过一个自动过程评估剂量学准确性,该过程比较在sCT和CT图像上计算的光子治疗计划的剂量分布,使用肿瘤和危及器官的剂量体积直方图(DVH)参数。
结果
以配对方式训练、具有2.5D输入-输出通道且采用ResNet生成器的Pix2Pix模型成为性能最佳的模型,平均绝对误差(MAE,均值)为63.21HU,计划靶体积Dmean差异为-0.09%,其他DVH参数无超过2%的异常值。这种配置解决了Pix2Pix在骨骼和刚性器官边界生成方面的先前挑战,即使对于有大量气腔的病例也能产生稳健的结果。2D输入-输出通道配置对以非配对方式训练的GAN有益,CycleGAN的平均MAE为66.97HU,CUT为69.49HU。两者均产生了临床适用的结果,平均DVH差异低于0.8%。扩大训练集大小对于最小化剂量学参数中的异常值至关重要。在图像相似度指标——MAE、骨骼MAE、结构相似性指数测量——与目标DVH参数之间观察到高度相关性,Pearson系数范围为0.77至0.9。然而,在DVH偏差的临床相关范围内(±2%),随机变化掩盖了线性趋势。
结论
该研究为腹部sCT生成任务提供了一个新的基准,表明其在治疗计划中的临床适用性,并进一步推动了技术发展。该研究还证实,仅图像相似度指标不能可靠地预测临床阈值内的小剂量偏差;但通过识别与±5%以上的DVH差异相关的特定指标做出了贡献,为跨研究的训练、评估和报告标准化提供了有价值的工具。