Suppr超能文献

使用深度学习预测的合成计算机断层扫描的晶格放射治疗无模拟工作流程:一项可行性研究。

Simulation-free workflow for lattice radiation therapy using deep learning predicted synthetic computed tomography: A feasibility study.

作者信息

Zhu Libing, Yu Nathan Y, Ahmed Safia K, Ashman Jonathan B, Toesca Diego Santos, Grams Michael P, Deufel Christopher L, Duan Jingwei, Chen Quan, Rong Yi

机构信息

Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA.

Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA.

出版信息

J Appl Clin Med Phys. 2025 Jul;26(7):e70137. doi: 10.1002/acm2.70137. Epub 2025 Jun 12.

Abstract

PURPOSE

Lattice radiation therapy (LRT) is a form of spatially fractionated radiation therapy that allows increased total dose delivery aiming for improved treatment response without an increase in toxicities, commonly utilized for palliation of bulky tumors. The LRT treatment planning process is complex, while eligible patients often have an urgent need for expedited treatment start. In this study, we aimed to develop a simulation-free workflow for volumetric modulated arc therapy (VMAT)-based LRT planning via deep learning-predicted synthetic CT (sCT) to expedite treatment initiation.

METHODS

Two deep learning models were initially trained using 3D U-Net architecture to generate sCT from diagnostic CTs (dCT) of the thoracic and abdomen regions using a training dataset of 50 patients. The models were then tested on an independent dataset of 15 patients using image similarity analysis assessing mean absolute error (MAE) and structural similarity index measure (SSIM) as metrics. VMAT-based LRT plans were generated based on sCT and recalculated on the planning CT (pCT) for dosimetric accuracy comparison. Differences in dose volume histogram (DVH) metrics between pCT and sCT plans were assessed using the Wilcoxon signed-rank test.

RESULTS

The final sCT prediction model demonstrated high image similarity to pCT, with a MAE and SSIM of 38.93 ± 14.79 Hounsfield Units (HU) and 0.92 ± 0.05 for the thoracic region, and 73.60 ± 22.90 HU and 0.90 ± 0.03 for the abdominal region, respectively. There were no statistically significant differences between sCT and pCT plans in terms of organ-at-risk and target volume DVH parameters, including maximum dose (Dmax), mean dose (Dmean), dose delivered to 90% (D90%) and 50% (D50%) of target volume, except for minimum dose (Dmin) and (D10%).

CONCLUSION

With demonstrated high image similarity and adequate dose agreement between sCT and pCT, our study is a proof-of-concept for using deep learning predicted sCT for a simulation-free treatment planning workflow for VMAT-based LRT.

摘要

目的

点阵放射治疗(LRT)是一种空间分割放射治疗形式,它允许增加总剂量输送,旨在提高治疗反应而不增加毒性,常用于缓解体积较大的肿瘤。LRT治疗计划过程复杂,而符合条件的患者通常迫切需要加快开始治疗。在本研究中,我们旨在通过深度学习预测的合成CT(sCT)开发一种基于容积调强弧形治疗(VMAT)的LRT计划的无模拟工作流程,以加快治疗启动。

方法

最初使用3D U-Net架构训练两个深度学习模型,使用50例患者的训练数据集从胸部和腹部区域的诊断CT(dCT)生成sCT。然后使用图像相似性分析,以平均绝对误差(MAE)和结构相似性指数测量(SSIM)作为指标,在15例患者的独立数据集上对模型进行测试。基于sCT生成基于VMAT的LRT计划,并在计划CT(pCT)上重新计算以进行剂量学准确性比较。使用Wilcoxon符号秩检验评估pCT和sCT计划之间剂量体积直方图(DVH)指标的差异。

结果

最终的sCT预测模型显示出与pCT的高图像相似性,胸部区域的MAE和SSIM分别为38.93±14.79亨氏单位(HU)和0.92±0.05,腹部区域分别为73.60±22.90 HU和0.90±0.03。在危及器官和靶体积DVH参数方面,sCT和pCT计划之间没有统计学上的显著差异,包括最大剂量(Dmax)、平均剂量(Dmean)、输送到靶体积90%(D90%)和50%(D50%)的剂量,除了最小剂量(Dmin)和(D10%)。

结论

鉴于sCT和pCT之间显示出高图像相似性和足够的剂量一致性,我们的研究是使用深度学习预测的sCT用于基于VMAT的LRT的无模拟治疗计划工作流程的概念验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验