Suppr超能文献

一种用于色素性浅表皮肤病变无创风险分层的新型放射学适应性逻辑模型:一项方法学初步研究。

A Novel Radiology-Adapted Logistic Model for Non-Invasive Risk Stratification of Pigmented Superficial Skin Lesions: A Methodological Pilot Study.

作者信息

Tiryaki Baştuğ Betül, Gencer Başol Hatice, Dursun Çoban Buket, Topuz Sinan, Türelik Özlem

机构信息

Department of Radiology, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey.

Department of Dermatology, Bilecik Training and Research Hospital, Bilecik 11230, Turkey.

出版信息

Diagnostics (Basel). 2025 Jul 30;15(15):1921. doi: 10.3390/diagnostics15151921.

Abstract

Pigmented superficial skin lesions pose a persistent diagnostic challenge due to overlapping clinical and dermoscopic appearances between benign and malignant entities. While histopathology remains the gold standard, there is growing interest in non-invasive imaging models that can preoperatively stratify malignancy risk. This methodological pilot study was designed to explore the feasibility and initial diagnostic performance of a novel radiology-adapted logistic regression approach. To develop and preliminarily evaluate a new logistic model integrating both structural (lesion size, depth) and vascular (Doppler patterns) ultrasonographic features for non-invasive risk stratification of pigmented superficial skin lesions. In this prospective single-center pilot investigation, 44 patients underwent standardized high-frequency grayscale and Doppler ultrasound prior to excisional biopsy. Lesion size, depth, and vascularity patterns were systematically recorded. Three logistic regression models were constructed: (1) based on lesion size and depth, (2) based on vascularity patterns alone, and (3) combining all parameters. Model performance was assessed via ROC curve analysis. Intra-observer reliability was determined by repeated measurements on a random subset. The lesion size and depth model yielded an AUC of 0.79, underscoring the role of structural features. The vascularity-only model showed an AUC of 0.76. The combined model demonstrated superior discriminative ability, with an AUC of approximately 0.85. Intra-observer analysis confirmed excellent repeatability (κ > 0.80; ICC > 0.85). This pilot study introduces a novel logistic framework that combines grayscale and Doppler ultrasound parameters to enhance non-invasive malignancy risk assessment in pigmented superficial skin lesions. These encouraging initial results warrant larger multicenter studies to validate and refine this promising approach.

摘要

色素沉着性浅表皮肤病变由于良性和恶性病变在临床和皮肤镜表现上存在重叠,给诊断带来了持续的挑战。虽然组织病理学仍然是金标准,但人们对能够在术前对恶性风险进行分层的非侵入性成像模型的兴趣与日俱增。这项方法学试点研究旨在探索一种新型的适用于放射学的逻辑回归方法的可行性和初步诊断性能。开发并初步评估一种新的逻辑模型,该模型整合结构(病变大小、深度)和血管(多普勒模式)超声特征,用于色素沉着性浅表皮肤病变的非侵入性风险分层。在这项前瞻性单中心试点研究中,44例患者在切除活检前接受了标准化的高频灰阶和多普勒超声检查。系统记录病变大小、深度和血管模式。构建了三个逻辑回归模型:(1)基于病变大小和深度,(2)仅基于血管模式,(3)结合所有参数。通过ROC曲线分析评估模型性能。通过对随机子集的重复测量来确定观察者内可靠性。病变大小和深度模型的AUC为0.79,突出了结构特征的作用。仅血管模式模型的AUC为0.76。联合模型显示出更好的判别能力,AUC约为0.85。观察者内分析证实了极好的可重复性(κ>0.80;ICC>0.85)。这项试点研究引入了一种新型的逻辑框架,该框架结合了灰阶和多普勒超声参数,以增强色素沉着性浅表皮肤病变的非侵入性恶性风险评估。这些令人鼓舞的初步结果值得进行更大规模的多中心研究,以验证和完善这种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c687/12346687/d2953f2ea3c8/diagnostics-15-01921-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验