Suppr超能文献

结合临床数据和[F]FDG-PET的放射组学用于鉴别感染与未感染的腔内血管(血管内)移植物:一项概念验证研究

Radiomics with Clinical Data and [F]FDG-PET for Differentiating Between Infected and Non-Infected Intracavitary Vascular (Endo)Grafts: A Proof-of-Concept Study.

作者信息

van Praagh Gijs D, Vos Francine, Legtenberg Stijn, Wouthuyzen-Bakker Marjan, Kouijzer Ilse J E, Aarntzen Erik H J G, de Vries Jean-Paul P M, Slart Riemer H J A, Alic Lejla, Sinha Bhanu, Saleem Ben R

机构信息

Department of Nuclear Medicine & Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.

Department of Surgery, Division of Vascular Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.

出版信息

Diagnostics (Basel). 2025 Aug 2;15(15):1944. doi: 10.3390/diagnostics15151944.

Abstract

We evaluated the feasibility of a machine-learning (ML) model based on clinical features and radiomics from [F]FDG PET/CT images to differentiate between infected and non-infected intracavitary vascular grafts and endografts (iVGEI). Three ML models were developed: one based on pre-treatment criteria to diagnose a vascular graft infection (" features"), another using radiomics features from diagnostic [F]FDG-PET scans, and a third combining both datasets. The training set included 92 patients (72 iVGEI-positive, 20 iVGEI-negative), and the external test set included 20 iVGEI-positive and 12 iVGEI-negative patients. The abdominal aorta and iliac arteries in the PET/CT scans were automatically segmented using SEQUOIA and TotalSegmentator and manually adjusted, extracting 96 radiomics features. The best-performing models for the features and features were selected from 343 unique models. Most relevant features were combined to test three final models using ROC analysis, accuracy, sensitivity, and specificity. The combined model achieved the highest AUC in the test set (mean ± SD: 0.91 ± 0.02) compared with the -only model (0.85 ± 0.06) and the model (0.73 ± 0.03). The combined model also achieved a higher accuracy (0.91 vs. 0.82) than the diagnosis based on all the MAGIC criteria and a comparable sensitivity and specificity (0.70 and 1.00 vs. 0.76 and 0.92, respectively) while providing diagnostic information at the initial presentation. The AUC for the combined model was significantly higher than the model ( = 0.02 in the bootstrap test), while other comparisons were not statistically significant. This study demonstrated the potential of ML models in supporting diagnostic decision making for iVGEI. A combined model using pre-treatment clinical features and PET-radiomics features showed high diagnostic performance and specificity, potentially reducing overtreatment and enhancing patient outcomes.

摘要

我们评估了一种基于临床特征和[F]FDG PET/CT图像的放射组学的机器学习(ML)模型区分感染性和非感染性腔内血管移植物及内置物(iVGEI)的可行性。开发了三种ML模型:一种基于诊断血管移植物感染的治疗前标准(“特征”),另一种使用诊断性[F]FDG-PET扫描的放射组学特征,第三种结合了两个数据集。训练集包括92例患者(72例iVGEI阳性,20例iVGEI阴性),外部测试集包括20例iVGEI阳性和12例iVGEI阴性患者。使用SEQUOIA和TotalSegmentator对PET/CT扫描中的腹主动脉和髂动脉进行自动分割并手动调整,提取96个放射组学特征。从343个独特模型中选择了表现最佳的“特征”模型和“特征”模型。结合最相关的特征,使用ROC分析、准确性、敏感性和特异性测试三个最终模型。与仅使用“特征”的模型(0.85±0.06)和“特征”模型(0.73±0.03)相比,组合模型在测试集中的AUC最高(平均值±标准差:0.91±0.02)。组合模型的准确性(0.91对0.82)也高于基于所有MAGIC标准的诊断,并且在初始就诊时提供诊断信息的同时,敏感性和特异性相当(分别为0.70和1.00对0.76和0.92)。组合模型的AUC显著高于“特征”模型(自助法测试中P=0.02),而其他比较无统计学意义。本研究证明了ML模型在支持iVGEI诊断决策方面的潜力。使用治疗前临床特征和PET放射组学特征的组合模型显示出高诊断性能和特异性,可能减少过度治疗并改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52c9/12346819/73e24c6d2872/diagnostics-15-01944-g001.jpg

相似文献

2
123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma.
Cochrane Database Syst Rev. 2015 Sep 29;2015(9):CD009263. doi: 10.1002/14651858.CD009263.pub2.
5
The predictive value of F-FDG PET/CT radiomics for pleural invasion in non-small cell lung cancer.
Eur J Radiol. 2025 May 24;190:112199. doi: 10.1016/j.ejrad.2025.112199.
6
7
PET-CT for assessing mediastinal lymph node involvement in patients with suspected resectable non-small cell lung cancer.
Cochrane Database Syst Rev. 2014 Nov 13;2014(11):CD009519. doi: 10.1002/14651858.CD009519.pub2.
8
Development and validation of a machine learning model for predicting co-infection of in pediatric patients.
Transl Pediatr. 2025 Jun 27;14(6):1201-1212. doi: 10.21037/tp-2024-562. Epub 2025 Jun 25.
10
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.

本文引用的文献

3
TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images.
Radiol Artif Intell. 2023 Jul 5;5(5):e230024. doi: 10.1148/ryai.230024. eCollection 2023 Sep.
4
The clinical value of quantitative cardiovascular molecular imaging: a step towards precision medicine.
Br J Radiol. 2023 Dec;96(1152):20230704. doi: 10.1259/bjr.20230704. Epub 2023 Oct 24.
5
Variability of [F]FDG-PET/LDCT reporting in vascular graft and endograft infection.
Eur J Nucl Med Mol Imaging. 2023 Nov;50(13):3880-3889. doi: 10.1007/s00259-023-06349-3. Epub 2023 Jul 29.
6
F-FDG-Based Radiomics and Machine Learning: Useful Help for Aortic Prosthetic Valve Infective Endocarditis Diagnosis?
JACC Cardiovasc Imaging. 2023 Jul;16(7):951-961. doi: 10.1016/j.jcmg.2023.01.020. Epub 2023 Apr 12.
8
[F] FDG PET/CT can improve the diagnostic accuracy for aortic endograft infection.
Acta Cardiol. 2022 Jul;77(5):399-407. doi: 10.1080/00015385.2021.1949105. Epub 2021 Oct 7.
10
Radiomics in medical imaging-"how-to" guide and critical reflection.
Insights Imaging. 2020 Aug 12;11(1):91. doi: 10.1186/s13244-020-00887-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验