LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France.
ScanoMed Ltd., Debrecen, Hungary.
Eur J Nucl Med Mol Imaging. 2023 Jan;50(2):352-375. doi: 10.1007/s00259-022-06001-6. Epub 2022 Nov 3.
The purpose of this guideline is to provide comprehensive information on best practices for robust radiomics analyses for both hand-crafted and deep learning-based approaches.
In a cooperative effort between the EANM and SNMMI, we agreed upon current best practices and recommendations for relevant aspects of radiomics analyses, including study design, quality assurance, data collection, impact of acquisition and reconstruction, detection and segmentation, feature standardization and implementation, as well as appropriate modelling schemes, model evaluation, and interpretation. We also offer an outlook for future perspectives.
Radiomics is a very quickly evolving field of research. The present guideline focused on established findings as well as recommendations based on the state of the art. Though this guideline recognizes both hand-crafted and deep learning-based radiomics approaches, it primarily focuses on the former as this field is more mature. This guideline will be updated once more studies and results have contributed to improved consensus regarding the application of deep learning methods for radiomics. Although methodological recommendations in the present document are valid for most medical image modalities, we focus here on nuclear medicine, and specific recommendations when necessary are made for PET/CT, PET/MR, and quantitative SPECT.
本指南的目的是为手工制作和基于深度学习的方法提供全面的稳健放射组学分析最佳实践信息。
在 EANM 和 SNMMI 的合作下,我们就放射组学分析的相关方面的当前最佳实践和建议达成一致,包括研究设计、质量保证、数据收集、采集和重建的影响、检测和分割、特征标准化和实现,以及适当的建模方案、模型评估和解释。我们还展望了未来的视角。
放射组学是一个发展非常迅速的研究领域。本指南侧重于既定的发现以及基于最新技术的建议。尽管本指南同时认可手工制作和基于深度学习的放射组学方法,但由于该领域更为成熟,因此主要侧重于前者。一旦更多的研究和结果有助于提高对深度学习方法在放射组学中应用的共识,本指南将进行更新。尽管本文件中的方法建议适用于大多数医学图像模态,但我们在此重点关注核医学,并在必要时针对 PET/CT、PET/MR 和定量 SPECT 提出具体建议。