文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用深度学习、网格搜索和贝叶斯网络预测乳腺癌远处复发

Leveraging Deep Learning, Grid Search, and Bayesian Networks to Predict Distant Recurrence of Breast Cancer.

作者信息

Jiang Xia, Zhou Yijun, Wells Alan, Brufsky Adam

机构信息

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA.

Department of Pathology, University of Pittsburgh and Pittsburgh VA Health System, Pittsburgh, PA 15261, USA.

出版信息

Cancers (Basel). 2025 Jul 30;17(15):2515. doi: 10.3390/cancers17152515.


DOI:10.3390/cancers17152515
PMID:40805211
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12346417/
Abstract

: Unlike most cancers, breast cancer poses a persistent risk of distant recurrence-often years after initial treatment-making long-term risk stratification uniquely challenging. Current tools fall short in predicting late metastatic events, particularly for early-stage patients. : We present an interpretable machine learning (ML) pipeline to predict distant recurrence-free survival at 5, 10, and 15 years, integrating Bayesian network-based causal feature selection, deep feed-forward neural network models (DNMs), and SHAP-based interpretation. Using electronic health record (EHR)-based clinical data from over 6000 patients, we first applied the Markov blanket and interactive risk factor learner (MBIL) to identify minimally sufficient predictor subsets. These were then used to train optimized DNM classifiers, with hyperparameters tuned via grid search and benchmarked against models from 10 traditional ML methods and models trained using all predictors. : Our best models achieved area under the curve (AUC) scores of 0.79, 0.83, and 0.89 for 5-, 10-, and 15-year predictions, respectively-substantially outperforming baselines. MBIL reduced input dimensionality by over 80% without sacrificing accuracy. Importantly, MBIL-selected features (e.g., nodal status, hormone receptor expression, tumor size) overlapped strongly with top SHAP contributors, reinforcing interpretability. Calibration plots further demonstrated close agreement between predicted probabilities and observed recurrence rates. The percentage performance improvement due to grid search ranged from 25.3% to 60%. : This study demonstrates that combining causal selection, deep learning, and grid search improves prediction accuracy, transparency, and calibration for long-horizon breast cancer recurrence risk. The proposed framework is well-positioned for clinical use, especially to guide long-term follow-up and therapy decisions in early-stage patients.

摘要

与大多数癌症不同,乳腺癌存在远处复发的持续风险——通常在初始治疗数年之后——这使得长期风险分层极具挑战性。目前的工具在预测晚期转移事件方面存在不足,尤其是对于早期患者。我们提出了一种可解释的机器学习(ML)流程,用于预测5年、10年和15年的无远处复发生存率,该流程整合了基于贝叶斯网络的因果特征选择、深度前馈神经网络模型(DNM)和基于SHAP的解释。利用来自6000多名患者的基于电子健康记录(EHR)的临床数据,我们首先应用马尔可夫毯和交互式风险因素学习器(MBIL)来识别最小充分预测子集。然后将这些子集用于训练优化的DNM分类器,通过网格搜索调整超参数,并与10种传统ML方法的模型以及使用所有预测因子训练的模型进行基准测试。我们的最佳模型在5年、10年和15年预测中的曲线下面积(AUC)得分分别为0.79、0.83和0.89——显著优于基线。MBIL在不牺牲准确性的情况下将输入维度降低了80%以上。重要的是,MBIL选择的特征(如淋巴结状态、激素受体表达、肿瘤大小)与SHAP贡献最大的因素高度重叠,增强了可解释性。校准图进一步证明了预测概率与观察到的复发率之间的密切一致性。由于网格搜索导致的性能提升百分比在25.3%至60%之间。这项研究表明,结合因果选择、深度学习和网格搜索可以提高对长期乳腺癌复发风险的预测准确性、透明度和校准。所提出的框架非常适合临床应用,特别是用于指导早期患者的长期随访和治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/3f8089c16f52/cancers-17-02515-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/5e76526c6c32/cancers-17-02515-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/eef60ae41945/cancers-17-02515-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/128fd571b5c3/cancers-17-02515-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/06067a52073d/cancers-17-02515-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/45c129778bd6/cancers-17-02515-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/c3d3b40cb020/cancers-17-02515-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/e74306d181f5/cancers-17-02515-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/3f8089c16f52/cancers-17-02515-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/5e76526c6c32/cancers-17-02515-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/eef60ae41945/cancers-17-02515-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/128fd571b5c3/cancers-17-02515-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/06067a52073d/cancers-17-02515-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/45c129778bd6/cancers-17-02515-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/c3d3b40cb020/cancers-17-02515-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/e74306d181f5/cancers-17-02515-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/12346417/3f8089c16f52/cancers-17-02515-g008.jpg

相似文献

[1]
Leveraging Deep Learning, Grid Search, and Bayesian Networks to Predict Distant Recurrence of Breast Cancer.

Cancers (Basel). 2025-7-30

[2]
Deep Learning: A Heuristic Three-Stage Mechanism for Grid Searches to Optimize the Future Risk Prediction of Breast Cancer Metastasis Using EHR-Based Clinical Data.

Cancers (Basel). 2025-3-25

[3]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[4]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[5]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[6]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[7]
A Responsible Framework for Assessing, Selecting, and Explaining Machine Learning Models in Cardiovascular Disease Outcomes Among People With Type 2 Diabetes: Methodology and Validation Study.

JMIR Med Inform. 2025-6-27

[8]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[9]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[10]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

本文引用的文献

[1]
Empirical Study of Overfitting in Deep Learning for Predicting Breast Cancer Metastasis.

Cancers (Basel). 2023-3-25

[2]
Deep Learning and Machine Learning with Grid Search to Predict Later Occurrence of Breast Cancer Metastasis Using Clinical Data.

J Clin Med. 2022-9-29

[3]
Text Data Augmentation for Deep Learning.

J Big Data. 2021

[4]
DeepOmix: A scalable and interpretable multi-omics deep learning framework and application in cancer survival analysis.

Comput Struct Biotechnol J. 2021-5-1

[5]
Automatic detect lung node with deep learning in segmentation and imbalance data labeling.

Sci Rep. 2021-5-27

[6]
Deep learning-enabled breast cancer hormonal receptor status determination from base-level H&E stains.

Nat Commun. 2020-11-16

[7]
Leveraging Bayesian networks and information theory to learn risk factors for breast cancer metastasis.

BMC Bioinformatics. 2020-7-10

[8]
Lymph Node Metastasis Prediction from Primary Breast Cancer US Images Using Deep Learning.

Radiology. 2019-11-19

[9]
A clinical decision support system learned from data to personalize treatment recommendations towards preventing breast cancer metastasis.

PLoS One. 2019-3-8

[10]
An overview of deep learning in medical imaging focusing on MRI.

Z Med Phys. 2018-12-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索