Salesforce Research, 575 High St, Palo Alto, CA, 94301, USA.
Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Ave, Los Angeles, CA, 90033, USA.
Nat Commun. 2020 Nov 16;11(1):5727. doi: 10.1038/s41467-020-19334-3.
For newly diagnosed breast cancer, estrogen receptor status (ERS) is a key molecular marker used for prognosis and treatment decisions. During clinical management, ERS is determined by pathologists from immunohistochemistry (IHC) staining of biopsied tissue for the targeted receptor, which highlights the presence of cellular surface antigens. This is an expensive, time-consuming process which introduces discordance in results due to variability in IHC preparation and pathologist subjectivity. In contrast, hematoxylin and eosin (H&E) staining-which highlights cellular morphology-is quick, less expensive, and less variable in preparation. Here we show that machine learning can determine molecular marker status, as assessed by hormone receptors, directly from cellular morphology. We develop a multiple instance learning-based deep neural network that determines ERS from H&E-stained whole slide images (WSI). Our algorithm-trained strictly with WSI-level annotations-is accurate on a varied, multi-country dataset of 3,474 patients, achieving an area under the curve (AUC) of 0.92 for sensitivity and specificity. Our approach has the potential to augment clinicians' capabilities in cancer prognosis and theragnosis by harnessing biological signals imperceptible to the human eye.
对于新诊断的乳腺癌,雌激素受体状态(estrogen receptor status,ERS)是用于预后和治疗决策的关键分子标志物。在临床管理中,通过对活检组织进行免疫组织化学(immunohistochemistry,IHC)染色来确定 ERS,该染色针对靶向受体,突出细胞表面抗原的存在。这是一个昂贵且耗时的过程,由于 IHC 准备和病理学家主观性的可变性,结果会出现不一致。相比之下,苏木精和伊红(hematoxylin and eosin,H&E)染色——突出细胞形态——快速、廉价且在准备过程中的可变性更小。在这里,我们展示了机器学习可以直接从细胞形态确定分子标志物状态,如激素受体。我们开发了一种基于多示例学习的深度神经网络,可以从 H&E 染色的全切片图像(whole slide image,WSI)中确定 ERS。我们的算法仅通过 WSI 级别的注释进行严格训练,在一个包含 3474 名患者的多样化、多国家数据集上具有准确性,其敏感性和特异性的曲线下面积(area under the curve,AUC)为 0.92。通过利用人类肉眼无法察觉的生物信号,我们的方法有可能增强临床医生在癌症预后和治疗中的能力。