Suppr超能文献

通过石膏增强的加压烟气热养护稳定大容量循环流化床粉煤灰复合砾石

Stabilization of High-Volume Circulating Fluidized Bed Fly Ash Composite Gravels via Gypsum-Enhanced Pressurized Flue Gas Heat Curing.

作者信息

Xu Nuo, Sa Rentuoya, He Yuqing, Guo Jun, Chen Yiheng, Wang Nana, Feng Yuchuan, Ma Suxia

机构信息

Shanxi Province Key Laboratory of Clean & High Efficient Combustion and Utilization of Circulating Fluidized Bed, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan 030024, China.

出版信息

Materials (Basel). 2025 Jul 22;18(15):3436. doi: 10.3390/ma18153436.

Abstract

Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO/SO-an environmental burden that exceeds 240 Mt yr in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO contents destabilize conventional cementitious products. Here, we presents a pressurized flue gas heat curing (FHC) route to bridge this scientific deficit, converting up to 85 wt% CFBFA into structural lightweight gravel. The gypsum dosage was optimized, and a 1:16 (gypsum/CFBFA) ratio delivered the best compromise between early ettringite nucleation and CO-uptake capacity, yielding the highest overall quality. The optimal mix reaches 9.13 MPa 28-day crushing strength, 4.27% in situ CO uptake, 1.75 g cm bulk density, and 3.59% water absorption. Multi-technique analyses (SEM, XRD, FTIR, TG-DTG, and MIP) show that FHC rapidly consumes expansive phases, suppresses undesirable granular-ettringite formation, and produces a dense calcite/needle-AFt skeleton. The FHC-treated CFBFA composite gravel demonstrates 30.43% higher crushing strength than JTG/TF20-2015 standards, accompanied by a water absorption rate 28.2% lower than recent studies. Its superior strength and durability highlight its potential as a low-carbon lightweight aggregate for structural engineering. A life-cycle inventory gives a cradle-to-gate energy demand of 1128 MJ t and a process GWP of 226 kg CO-eq t. Consequently, higher point-source emissions paired with immediate mineral sequestration translate into a low overall climate footprint and eliminate the need for CFBFA landfilling.

摘要

循环流化床粉煤灰(CFBFA)储存会释放碱性粉尘、高pH值渗滤液和二次CO/SO,仅在中国,这一环境负担就超过每年240百万吨。然而,仅有25%得到回收利用,因为高f-CaO/SO含量会使传统胶凝产品不稳定。在此,我们提出一种加压烟气热养护(FHC)途径来弥补这一科学空白,可将高达85 wt%的CFBFA转化为结构轻质砾石。优化了石膏用量,1:16(石膏/CFBFA)的比例在早期钙矾石成核和CO吸收能力之间实现了最佳平衡,产生了最高的整体质量。最佳混合料28天抗压强度达到9.13 MPa,原位CO吸收量为4.27%,堆积密度为1.75 g/cm,吸水率为3.59%。多技术分析(SEM、XRD、FTIR、TG-DTG和MIP)表明,FHC能快速消耗膨胀相,抑制不良粒状钙矾石的形成,并产生致密的方解石/针状AFt骨架。经FHC处理的CFBFA复合砾石的抗压强度比JTG/TF20-2015标准高30.43%,吸水率比近期研究低28.2%。其优异的强度和耐久性突出了其作为结构工程低碳轻质骨料的潜力。生命周期清单显示,从摇篮到大门的能源需求为1128 MJ/t,工艺全球变暖潜能值为226 kg CO2-eq/t。因此,较高的点源排放与即时矿物固存相结合,转化为较低的整体气候足迹,无需填埋CFBFA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43eb/12347485/2efb96cea20f/materials-18-03436-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验