Xu Nuo, Sa Rentuoya, He Yuqing, Guo Jun, Chen Yiheng, Wang Nana, Feng Yuchuan, Ma Suxia
Shanxi Province Key Laboratory of Clean & High Efficient Combustion and Utilization of Circulating Fluidized Bed, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan 030024, China.
Materials (Basel). 2025 Jul 22;18(15):3436. doi: 10.3390/ma18153436.
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO/SO-an environmental burden that exceeds 240 Mt yr in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO contents destabilize conventional cementitious products. Here, we presents a pressurized flue gas heat curing (FHC) route to bridge this scientific deficit, converting up to 85 wt% CFBFA into structural lightweight gravel. The gypsum dosage was optimized, and a 1:16 (gypsum/CFBFA) ratio delivered the best compromise between early ettringite nucleation and CO-uptake capacity, yielding the highest overall quality. The optimal mix reaches 9.13 MPa 28-day crushing strength, 4.27% in situ CO uptake, 1.75 g cm bulk density, and 3.59% water absorption. Multi-technique analyses (SEM, XRD, FTIR, TG-DTG, and MIP) show that FHC rapidly consumes expansive phases, suppresses undesirable granular-ettringite formation, and produces a dense calcite/needle-AFt skeleton. The FHC-treated CFBFA composite gravel demonstrates 30.43% higher crushing strength than JTG/TF20-2015 standards, accompanied by a water absorption rate 28.2% lower than recent studies. Its superior strength and durability highlight its potential as a low-carbon lightweight aggregate for structural engineering. A life-cycle inventory gives a cradle-to-gate energy demand of 1128 MJ t and a process GWP of 226 kg CO-eq t. Consequently, higher point-source emissions paired with immediate mineral sequestration translate into a low overall climate footprint and eliminate the need for CFBFA landfilling.
循环流化床粉煤灰(CFBFA)储存会释放碱性粉尘、高pH值渗滤液和二次CO/SO,仅在中国,这一环境负担就超过每年240百万吨。然而,仅有25%得到回收利用,因为高f-CaO/SO含量会使传统胶凝产品不稳定。在此,我们提出一种加压烟气热养护(FHC)途径来弥补这一科学空白,可将高达85 wt%的CFBFA转化为结构轻质砾石。优化了石膏用量,1:16(石膏/CFBFA)的比例在早期钙矾石成核和CO吸收能力之间实现了最佳平衡,产生了最高的整体质量。最佳混合料28天抗压强度达到9.13 MPa,原位CO吸收量为4.27%,堆积密度为1.75 g/cm,吸水率为3.59%。多技术分析(SEM、XRD、FTIR、TG-DTG和MIP)表明,FHC能快速消耗膨胀相,抑制不良粒状钙矾石的形成,并产生致密的方解石/针状AFt骨架。经FHC处理的CFBFA复合砾石的抗压强度比JTG/TF20-2015标准高30.43%,吸水率比近期研究低28.2%。其优异的强度和耐久性突出了其作为结构工程低碳轻质骨料的潜力。生命周期清单显示,从摇篮到大门的能源需求为1128 MJ/t,工艺全球变暖潜能值为226 kg CO2-eq/t。因此,较高的点源排放与即时矿物固存相结合,转化为较低的整体气候足迹,无需填埋CFBFA。