Michna Štefan, Svobodová Jaroslava, Knaislová Anna, Novotný Jan, Michnová Lenka
Faculty of Mechanical Engineering, J. E. Purkyne Universty in Usti nad Labem, Pasteurova 3334/7, 400 96 Usti nad Labem, Czech Republic.
Faculty of Engineering, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague-Suchdol, Czech Republic.
Materials (Basel). 2025 Jul 30;18(15):3583. doi: 10.3390/ma18153583.
This study presents the structural and compositional characterisation of a newly developed Ti55Al27Mo13 alloy synthesised via aluminothermic reaction. The alloy was designed to overcome the limitations of conventional processing routes for high-melting-point elements such as Ti and Mo, enabling the formation of a complex, multi-phase microstructure in a single high-temperature step. The aim was to develop and characterise a material with microstructural features expected to enhance wear resistance, oxidation behaviour, and thermal stability in future applications. The alloy is intended as a precursor for composite nanopowders and surface coatings applied to aluminium-, magnesium-, and iron-based substrates subjected to mechanical and thermal loading. Elemental analysis (XRF, EDS) confirmed the presence of Ti, Al, Mo, and minor elements such as Si, Fe, and C. Microstructural investigations using laser confocal and scanning electron microscopy revealed a heterogeneous structure comprising solid solutions, eutectic regions, and dispersed oxide and carbide phases. Notably, the alloy exhibits high hardness values, reaching >2400 HV in AlO regions and ~1300 HV in Mo- and Si-enriched solid solutions. These results suggest the material's substantial potential for protective surface engineering. Further tribological, thermal, and corrosion testing, conducted with meticulous attention to detail, will follow to validate its functional performance in target applications.
本研究介绍了一种通过铝热反应合成的新开发的Ti55Al27Mo13合金的结构和成分表征。该合金旨在克服传统加工路线对钛和钼等高熔点元素的限制,能够在单个高温步骤中形成复杂的多相微观结构。目的是开发和表征一种材料,其微观结构特征有望在未来应用中提高耐磨性、氧化行为和热稳定性。该合金旨在作为复合纳米粉末和表面涂层的前驱体,应用于承受机械和热负荷的铝基、镁基和铁基基材。元素分析(XRF、EDS)证实了钛、铝、钼以及硅、铁和碳等微量元素的存在。使用激光共聚焦显微镜和扫描电子显微镜进行的微观结构研究揭示了一种由固溶体、共晶区域以及分散的氧化物和碳化物相组成的异质结构。值得注意的是,该合金具有较高的硬度值,在AlO区域达到>2400 HV,在富含钼和硅的固溶体中达到约1300 HV。这些结果表明该材料在表面防护工程方面具有巨大潜力。随后将进行更细致的摩擦学、热学和腐蚀测试,以验证其在目标应用中的功能性能。