Stuckert Robert, Pohl Felix, Prymak Oleg, Schürmann Ulrich, Rehbock Christoph, Kienle Lorenz, Barcikowski Stephan
Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141 Essen, Germany.
Institute for Material Science, Synthesis and Real Structure, Faculty of Engineering, Christian-Albrechts University of Kiel, Kaiserstraße 2, 24143 Kiel, Germany.
Beilstein J Nanotechnol. 2025 Jul 17;16:1141-1159. doi: 10.3762/bjnano.16.84. eCollection 2025.
High-entropy alloy nanoparticles (HEA NPs) represent a promising material class with significant potential in various applications, such as heterogeneous catalysis or magnetic devices. This is due to their exceptional compositional tunability arising from the synergistic interplay of multiple elements within a single particle. While laser-synthesized, surfactant-free colloidal HEA NPs have already been reported, the underlying formation mechanism remains unknown, particularly the underexplored preference of amorphous over crystalline structures warrants further investigation. Herein, we present a systematic study of laser-generated equimolar CrMnFeCoNi nanoparticles, focusing on structural differences, arising from varying pulse durations during synthesis in organic solvents (acetone, ethanol, acetonitrile). In a systematic experimental series using high-resolution transmission electron microscopy, scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy, selected-area electron diffraction, X-ray diffraction, electron energy loss spectroscopy, in situ heating, post-irradiation experiments, and differential scanning calorimetry we demonstrate that a pulse-duration-driven structural difference occurs during laser ablation in liquid is observable to the three utilized solvents. While picosecond-pulsed laser ablation in liquid produces polycrystalline HEA NPs, nanosecond-pulsed laser ablation favors a metastable amorphous structure. Particle cores in all cases exhibit a homogeneous distribution of the metals Cr, Mn, Fe, Co, and Ni, while particle shells were found to vary between manganese-enriched oxide layers and thin graphitic carbon coatings. The discovery of the structure-directing mechanism allows one to select between crystalline or amorphous HEA NP products, simply by choice of the laser pulse duration in the same, well-scalable setup, giving access to colloidal particles that can be further downstream processed to heterogeneous catalysts or magnets. In that context, the outstanding temperature stability up to 375 °C (differential scanning calorimetry) or 500 °C (transmission electron microscopy) may motivate future application-relevant work.
高熵合金纳米颗粒(HEA NPs)是一类很有前途的材料,在多相催化或磁性器件等各种应用中具有巨大潜力。这是由于它们在单个颗粒内多种元素的协同相互作用产生了特殊的成分可调性。虽然已经报道了激光合成的、无表面活性剂的胶体HEA NPs,但其潜在的形成机制仍然未知,特别是非晶态结构相对于晶体结构的未被充分探索的偏好值得进一步研究。在此,我们对激光产生的等摩尔CrMnFeCoNi纳米颗粒进行了系统研究,重点关注在有机溶剂(丙酮、乙醇、乙腈)中合成过程中不同脉冲持续时间引起的结构差异。在一系列使用高分辨率透射电子显微镜、带有能量色散X射线光谱的扫描透射电子显微镜、选区电子衍射、X射线衍射、电子能量损失光谱、原位加热、辐照后实验和差示扫描量热法的系统实验中,我们证明在液体中激光烧蚀过程中由脉冲持续时间驱动的结构差异在三种所用溶剂中都可观察到。虽然液体中的皮秒脉冲激光烧蚀产生多晶HEA NPs,但纳秒脉冲激光烧蚀有利于形成亚稳态非晶结构。在所有情况下,颗粒核心都表现出Cr、Mn、Fe、Co和Ni金属的均匀分布,而发现颗粒壳层在富锰氧化物层和薄石墨碳涂层之间有所不同。结构导向机制的发现使人们能够在相同且易于扩展的设置中,只需选择激光脉冲持续时间,就可以在结晶或非晶HEA NP产品之间进行选择,从而获得可进一步下游加工成多相催化剂或磁体的胶体颗粒。在这种情况下,高达375°C(差示扫描量热法)或500°C(透射电子显微镜)的出色温度稳定性可能会推动未来与应用相关的工作。