Suppr超能文献

通过激光粉末床熔融增材制造的1080碳钢在高通量力学性能测试中的快速优化工艺参数

Rapid-Optimized Process Parameters of 1080 Carbon Steel Additively Manufactured via Laser Powder Bed Fusion on High-Throughput Mechanical Property Testing.

作者信息

Feng Jianyu, Jiang Meiling, Huang Guoliang, Wu Xudong, Huang Ke

机构信息

College of Pittsburgh, Sichuan University, Chengdu 610200, China.

College of Materials Science & Engineering, Sichuan University, Chengdu 610065, China.

出版信息

Materials (Basel). 2025 Aug 6;18(15):3705. doi: 10.3390/ma18153705.

Abstract

To ensure the sustainability of alloy-based strategies, both compositional design and processing routes must be simplified. Metal additive manufacturing (AM), with its exceptionally rapid, non-equilibrium solidification, offers a unique platform to produce tailored microstructures in simple alloys that deliver superior mechanical properties. In this study, we employ laser powder bed fusion (LPBF) to fabricate 1080 plain carbon steel, a binary alloy comprising only iron and carbon. Deviating from conventional process optimization focusing primarily on density, we optimize LPBF parameters for mechanical performance. We systematically varied key parameters (laser power and scan speed) to produce batches of tensile specimens, which were then evaluated on a high-throughput mechanical testing platform (HTP). Using response surface methodology (RSM), we developed predictive models correlating these parameters with yield strength (YS) and elongation. The RSM models identified optimal and suboptimal parameter sets. Specimens printed under the predicted optimal conditions achieved YS of 1543.5 MPa and elongation of 7.58%, closely matching RSM predictions (1595.3 MPa and 8.32%) with deviations of -3.25% and -8.89% for YS and elongation, respectively, thus validating model accuracy. Comprehensive microstructural characterization, including metallographic analysis and fracture surface examination, revealed the microstructural origins of performance differences and the underlying strengthening mechanisms. This methodology enables rapid evaluation and optimization of LPBF parameters for 1080 carbon steel and can be generalized as an efficient framework for robust LPBF process development.

摘要

为确保基于合金的策略具有可持续性,必须简化成分设计和加工路线。金属增材制造(AM)具有极快的非平衡凝固速度,为在简单合金中制造具有优异机械性能的定制微观结构提供了一个独特的平台。在本研究中,我们采用激光粉末床熔融(LPBF)技术制造1080碳钢,这是一种仅由铁和碳组成的二元合金。与主要关注密度的传统工艺优化不同,我们针对机械性能优化LPBF参数。我们系统地改变关键参数(激光功率和扫描速度)以生产多批拉伸试样,然后在高通量机械测试平台(HTP)上对其进行评估。使用响应面方法(RSM),我们开发了将这些参数与屈服强度(YS)和伸长率相关联的预测模型。RSM模型确定了最佳和次优参数集。在预测的最佳条件下打印的试样的屈服强度为1543.5MPa,伸长率为7.58%,与RSM预测值(1595.3MPa和8.32%)非常接近,屈服强度和伸长率的偏差分别为-3.25%和-8.89%,从而验证了模型的准确性。包括金相分析和断口表面检查在内的综合微观结构表征揭示了性能差异的微观结构根源和潜在的强化机制。这种方法能够快速评估和优化LPBF工艺参数用于1080碳钢,并且可以推广为稳健的LPBF工艺开发的有效框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92f0/12348772/b53ff2875099/materials-18-03705-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验