文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过免疫信息学方法开发广谱泛痘疫苗。

Development of a Broad-Spectrum Pan-Mpox Vaccine via Immunoinformatic Approaches.

作者信息

Puagsopa Japigorn, Jumpalee Panuwid, Dechanun Sittichoke, Choengchalad Sukanya, Lohasupthawee Pana, Sutjaritvorakul Thanawat, Meksiriporn Bunyarit

机构信息

Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA.

Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.

出版信息

Int J Mol Sci. 2025 Jul 25;26(15):7210. doi: 10.3390/ijms26157210.


DOI:10.3390/ijms26157210
PMID:40806344
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12346078/
Abstract

Monkeypox virus (MPXV) has caused 148,892 confirmed cases and 341 deaths from 137 countries worldwide, as reported by the World Health Organization (WHO), highlighting the urgent need for effective vaccines to prevent the spread of MPXV. Traditional vaccine development is low-throughput, expensive, time consuming, and susceptible to reversion to virulence. Alternatively, a reverse vaccinology approach offers a rapid, efficient, and safer alternative for MPXV vaccine design. Here, MPXV proteins associated with viral infection were analyzed for immunogenic epitopes to design multi-epitope vaccines based on B-cell, CD4+, and CD8+ epitopes. Epitopes were selected based on allergenicity, antigenicity, and toxicity parameters. The prioritized epitopes were then combined via peptide linkers and N-terminally fused to various protein adjuvants, including PADRE, beta-defensin 3, 50S ribosomal protein L7/12, RS-09, and the cholera toxin B subunit (CTB). All vaccine constructs were computationally validated for physicochemical properties, antigenicity, allergenicity, safety, solubility, and structural stability. The three-dimensional structure of the selected construct was also predicted. Moreover, molecular docking and molecular dynamics (MD) simulations between the vaccine and the TLR-4 immune receptor demonstrated a strong and stable interaction. The vaccine construct was codon-optimized for high expression in the and was finally cloned in silico into the pET21a (+) vector. Collectively, these results could represent innovative tools for vaccine formulation against MPXV and be transformative for other infectious diseases.

摘要

据世界卫生组织(WHO)报告,猴痘病毒(MPXV)已在全球137个国家造成148,892例确诊病例和341例死亡,凸显了迫切需要有效的疫苗来预防MPXV传播。传统疫苗开发通量低、成本高、耗时且易发生毒力回复。相比之下,反向疫苗学方法为MPXV疫苗设计提供了一种快速、高效且更安全的替代方案。在此,对与病毒感染相关的MPXV蛋白进行免疫原性表位分析,以设计基于B细胞、CD4 +和CD8 +表位的多表位疫苗。根据致敏性、抗原性和毒性参数选择表位。然后通过肽接头将优先选择的表位组合,并在N端与各种蛋白质佐剂融合,包括PADRE、β-防御素3、50S核糖体蛋白L7/12、RS-09和霍乱毒素B亚基(CTB)。对所有疫苗构建体进行了物理化学性质、抗原性、致敏性、安全性、溶解性和结构稳定性的计算验证。还预测了所选构建体的三维结构。此外,疫苗与TLR-4免疫受体之间的分子对接和分子动力学(MD)模拟显示出强烈且稳定的相互作用。对疫苗构建体进行密码子优化以在 中高表达,最后在计算机上克隆到pET21a(+)载体中。总体而言,这些结果可能代表了针对MPXV疫苗制剂的创新工具,并对其他传染病具有变革性意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/e61134c20b21/ijms-26-07210-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/c4d475256d94/ijms-26-07210-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/87a7ae0215a0/ijms-26-07210-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/78a66f571c0a/ijms-26-07210-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/9c04cedcc39d/ijms-26-07210-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/2dc7bb3f551b/ijms-26-07210-g0A5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/95b3d84ef9b5/ijms-26-07210-g0A6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/e3fc93fb9f73/ijms-26-07210-g0A7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/b478ac811fbc/ijms-26-07210-g0A8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/093a6737fa11/ijms-26-07210-g0A9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/129d0f55dbb3/ijms-26-07210-g0A10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/ba2cb69f9299/ijms-26-07210-g0A11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/c5b753a3dd4b/ijms-26-07210-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/a1bb1cc296e6/ijms-26-07210-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/892328e0d869/ijms-26-07210-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/621fadb53aaa/ijms-26-07210-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/4c1374201ba1/ijms-26-07210-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/b3d8a8d0bd24/ijms-26-07210-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/27705b0e11ac/ijms-26-07210-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/44e38efadc2b/ijms-26-07210-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/4928dc54eb43/ijms-26-07210-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/e61134c20b21/ijms-26-07210-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/c4d475256d94/ijms-26-07210-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/87a7ae0215a0/ijms-26-07210-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/78a66f571c0a/ijms-26-07210-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/9c04cedcc39d/ijms-26-07210-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/2dc7bb3f551b/ijms-26-07210-g0A5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/95b3d84ef9b5/ijms-26-07210-g0A6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/e3fc93fb9f73/ijms-26-07210-g0A7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/b478ac811fbc/ijms-26-07210-g0A8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/093a6737fa11/ijms-26-07210-g0A9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/129d0f55dbb3/ijms-26-07210-g0A10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/ba2cb69f9299/ijms-26-07210-g0A11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/c5b753a3dd4b/ijms-26-07210-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/a1bb1cc296e6/ijms-26-07210-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/892328e0d869/ijms-26-07210-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/621fadb53aaa/ijms-26-07210-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/4c1374201ba1/ijms-26-07210-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/b3d8a8d0bd24/ijms-26-07210-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/27705b0e11ac/ijms-26-07210-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/44e38efadc2b/ijms-26-07210-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/4928dc54eb43/ijms-26-07210-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f74/12346078/e61134c20b21/ijms-26-07210-g010.jpg

相似文献

[1]
Development of a Broad-Spectrum Pan-Mpox Vaccine via Immunoinformatic Approaches.

Int J Mol Sci. 2025-7-25

[2]
Immunoinformatic design of chimeric multiepitope vaccine for the prevention of human metapneumovirus (hMPV).

BMC Infect Dis. 2025-7-30

[3]
Immuno-informatics analyses of important esophageal cancer associated viruses for multi-epitope vaccine design.

Front Immunol. 2025-7-8

[4]
Development of a potential vaccine against Capripox virus implementing reverse vaccinology and pan-genomic immunoinformatics.

PLoS One. 2025-7-2

[5]
A novel mRNA-based multi-epitope vaccine for rabies virus computationally designed via reverse vaccinology and immunoinformatics.

Sci Rep. 2025-8-19

[6]
Computational design of a multi-epitope mRNA vaccine against orthopoxviruses: A path toward comprehensive poxvirus protection.

Comput Biol Med. 2025-9

[7]
Robust Multiepitope Vaccine from Glycoproteins Against Human Metapneumovirus Genotypes A2a, A2b, and A2c by Utilizing Immunoinformatics and Reverse Vaccinology Approaches.

Viral Immunol. 2025-6

[8]
Immunoinformatics-Based development of a Multi-Epitope vaccine candidate targeting coinfection by Klebsiella pneumoniae and Acinetobacter baumannii.

BMC Infect Dis. 2025-7-3

[9]
In silico development of a broad-spectrum vaccine against ESKAPE pathogens.

J Mol Graph Model. 2025-7-1

[10]
A robust comprehensive immunoinformatics approach for designing a potential multi-epitope based vaccine against a reiterated monkeypox virus.

Biochem Biophys Rep. 2025-6-12

本文引用的文献

[1]
The HADDOCK2.4 web server for integrative modeling of biomolecular complexes.

Nat Protoc. 2024-11

[2]
Sustained human outbreak of a new MPXV clade I lineage in eastern Democratic Republic of the Congo.

Nat Med. 2024-10

[3]
Analysis of binding and authentic virus-neutralizing activities of immune sera induced by various monkeypox virus antigens.

Immunol Res. 2024-10

[4]
Accurate structure prediction of biomolecular interactions with AlphaFold 3.

Nature. 2024-6

[5]
Implications of the 2023-2024 MPXV clade I outbreak in the Democratic Republic of Congo to global public health.

Clin Microbiol Infect. 2024-9

[6]
The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024.

Nucleic Acids Res. 2024-7-5

[7]
Ongoing mpox outbreak in Kamituga, South Kivu province, associated with monkeypox virus of a novel Clade I sub-lineage, Democratic Republic of the Congo, 2024.

Euro Surveill. 2024-3

[8]
Human antibody responses to circulating monkeypox virus emphasise the need for the first mpox-specific vaccine.

Lancet Microbe. 2024-3

[9]
Cross-reactive antibody response to Monkeypox virus surface proteins in a small proportion of individuals with and without Chinese smallpox vaccination history.

BMC Biol. 2023-10-2

[10]
An Analysis of Linker-Dependent Effects on the APC Activation and In Vivo Immunogenicity of an R848-Conjugated Influenza Vaccine.

Vaccines (Basel). 2023-7-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索