Prenesti Giuseppe, Perri Pierfrancesco, Anoja Alessia, Lauria Agostino, Rizzuto Carmen, Cassano Alfredo, Tocci Elena, Caravella Alessio
Department of Computer Engineering, Modelling, Electronics and System Engineering (DIMES), University of Calabria, Via P. Bucci 42C, 87036 Rende, CS, Italy.
Institute on Membrane Technology-National Research Council of Italy (CNR-ITM), Via P. Bucci 17C, 87036 Rende, CS, Italy.
Int J Mol Sci. 2025 Jul 30;26(15):7380. doi: 10.3390/ijms26157380.
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact with LiF solutions at different concentrations (5.8 M and 8.9 M) and temperatures (300-353 K), across multiple time points (0, 150, and 300 ns). These data were used as input for computational fluid dynamics (CFD) analysis to evaluate structural descriptors of the membrane, including tortuosity, connectivity, void fraction, anisotropy, and deviatoric anisotropy, under varying thermodynamic conditions. The results show subtle but consistent rearrangements of polymer chains upon exposure to the hypersaline environment, with a marked reduction in anisotropy and connectivity, indicating a more compact and isotropic local structure. Surface charge density analyses further suggest a temperature- and concentration-dependent modulation of chain mobility and terminal group orientation at the membrane-solution interface. Despite localized rearrangements, the membrane consistently maintains a net negative surface charge. This electrostatic feature may influence ion-membrane interactions during the crystallization process. While these non-reactive, short-timescale simulations do not capture long-term degradation or fouling mechanisms, they provide mechanistic insight into the initial physical response of PP membranes under MCr-relevant conditions. This study lays a computational foundation for future investigations bridging atomistic modeling and membrane performance in real-world applications.
了解聚合物膜与过饱和盐溶液之间的早期物理相互作用对于推进膜辅助结晶(MCr)过程至关重要。在本研究中,我们采用分子动力学(MD)模拟来研究等规聚丙烯(PP)膜在不同浓度(5.8 M和8.9 M)和温度(300 - 353 K)下与LiF溶液接触时在多个时间点(0、150和300 ns)的短期形态响应。这些数据被用作计算流体动力学(CFD)分析的输入,以评估在不同热力学条件下膜的结构描述符,包括曲折度、连通性、孔隙率、各向异性和偏斜各向异性。结果表明,暴露于高盐环境后聚合物链发生了细微但一致的重排,各向异性和连通性显著降低,表明局部结构更加紧凑和各向同性。表面电荷密度分析进一步表明,膜 - 溶液界面处链迁移率和端基取向存在温度和浓度依赖性调制。尽管存在局部重排,但膜始终保持净负表面电荷。这种静电特性可能会影响结晶过程中的离子 - 膜相互作用。虽然这些非反应性的短时间尺度模拟没有捕捉到长期降解或污垢形成机制,但它们提供了关于PP膜在与MCr相关条件下初始物理响应的机理见解。本研究为未来在实际应用中连接原子尺度建模和膜性能的研究奠定了计算基础。