Hong Feitong, Chen Qiuming, Luo Xinwei, Xie Sijia, Wei Yijie, Li Xiaolong, Li Kexin, Lebeau Benjamin, Ling Crystal, Dao Fuying, Lin Hao, Tang Lixia, Yang Mi, Lv Hao
The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore.
Int J Mol Sci. 2025 Aug 7;26(15):7640. doi: 10.3390/ijms26157640.
Schizophrenia (SCZ) is a complex psychiatric disorder with heterogeneous molecular underpinnings that remain poorly resolved by conventional single-omics approaches, limiting biomarker discovery and mechanistic insights. To address this gap, we applied an artificial intelligence (AI)-driven multi-omics framework to an open access dataset comprising plasma proteomics, post-translational modifications (PTMs), and metabolomics to systematically dissect SCZ pathophysiology. In a cohort of 104 individuals, comparative analysis of 17 machine learning models revealed that multi-omics integration significantly enhanced classification performance, reaching a maximum AUC of 0.9727 (95% CI: 0.8889-1.000) using LightGBMXT, compared to 0.9636 (95% CI: 0.8636-1.0000) with CNNBiLSTM for proteomics alone. Interpretable feature prioritization identified carbamylation at immunoglobulin-constant region sites IGKC_K20 and IGHG1_K8, alongside oxidation of coagulation factor F10 at residue M8, as key discriminative molecular events. Functional analyses identified significantly enriched pathways including complement activation, platelet signaling, and gut microbiota-associated metabolism. Protein interaction networks further implicated coagulation factors F2, F10, and PLG, as well as complement regulators CFI and C9, as central molecular hubs. The clustering of these molecules highlights a potential axis linking immune activation, blood coagulation, and tissue homeostasis, biological domains increasingly recognized in psychiatric disorders. These results implicate immune-thrombotic dysregulation as a critical component of SCZ pathology, with PTMs of immune proteins serving as quantifiable disease indicators. Our work delineates a robust computational strategy for multi-omics integration into psychiatric research, offering biomarker candidates that warrant further validation for diagnostic and therapeutic applications.
精神分裂症(SCZ)是一种复杂的精神疾病,其分子基础具有异质性,传统的单组学方法对此仍难以解析,这限制了生物标志物的发现和对发病机制的深入理解。为了填补这一空白,我们将人工智能(AI)驱动的多组学框架应用于一个开放获取的数据集,该数据集包含血浆蛋白质组学、翻译后修饰(PTM)和代谢组学,以系统地剖析SCZ的病理生理学。在一个由104名个体组成的队列中,对17种机器学习模型的比较分析表明,多组学整合显著提高了分类性能,使用LightGBMXT时最大AUC达到0.9727(95%CI:0.8889 - 1.000),而仅使用蛋白质组学的CNNBiLSTM时AUC为0.9636(95%CI:0.8636 - 1.0000)。可解释的特征优先级排序确定了免疫球蛋白恒定区位点IGKC_K20和IGHG1_K8处的氨甲酰化,以及凝血因子F10在残基M8处的氧化,作为关键的判别分子事件。功能分析确定了显著富集的通路,包括补体激活、血小板信号传导和肠道微生物群相关代谢。蛋白质相互作用网络进一步表明凝血因子F2、F10和PLG,以及补体调节因子CFI和C9是核心分子枢纽。这些分子的聚类突出了一个潜在的轴,将免疫激活、血液凝固和组织稳态联系起来,这些生物学领域在精神疾病中越来越受到认可。这些结果表明免疫 - 血栓调节异常是SCZ病理的关键组成部分,免疫蛋白的PTM可作为可量化的疾病指标。我们的工作描绘了一种强大的计算策略,用于将多组学整合到精神疾病研究中,提供了有待进一步验证用于诊断和治疗应用的生物标志物候选物。
Alzheimers Dement. 2021-4