文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种具有自动化机器学习的多组学整合框架可识别用于精神分裂症风险分层的外周免疫凝血生物标志物。

A Multi-Omics Integration Framework with Automated Machine Learning Identifies Peripheral Immune-Coagulation Biomarkers for Schizophrenia Risk Stratification.

作者信息

Hong Feitong, Chen Qiuming, Luo Xinwei, Xie Sijia, Wei Yijie, Li Xiaolong, Li Kexin, Lebeau Benjamin, Ling Crystal, Dao Fuying, Lin Hao, Tang Lixia, Yang Mi, Lv Hao

机构信息

The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.

School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore.

出版信息

Int J Mol Sci. 2025 Aug 7;26(15):7640. doi: 10.3390/ijms26157640.


DOI:10.3390/ijms26157640
PMID:40806769
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12347864/
Abstract

Schizophrenia (SCZ) is a complex psychiatric disorder with heterogeneous molecular underpinnings that remain poorly resolved by conventional single-omics approaches, limiting biomarker discovery and mechanistic insights. To address this gap, we applied an artificial intelligence (AI)-driven multi-omics framework to an open access dataset comprising plasma proteomics, post-translational modifications (PTMs), and metabolomics to systematically dissect SCZ pathophysiology. In a cohort of 104 individuals, comparative analysis of 17 machine learning models revealed that multi-omics integration significantly enhanced classification performance, reaching a maximum AUC of 0.9727 (95% CI: 0.8889-1.000) using LightGBMXT, compared to 0.9636 (95% CI: 0.8636-1.0000) with CNNBiLSTM for proteomics alone. Interpretable feature prioritization identified carbamylation at immunoglobulin-constant region sites IGKC_K20 and IGHG1_K8, alongside oxidation of coagulation factor F10 at residue M8, as key discriminative molecular events. Functional analyses identified significantly enriched pathways including complement activation, platelet signaling, and gut microbiota-associated metabolism. Protein interaction networks further implicated coagulation factors F2, F10, and PLG, as well as complement regulators CFI and C9, as central molecular hubs. The clustering of these molecules highlights a potential axis linking immune activation, blood coagulation, and tissue homeostasis, biological domains increasingly recognized in psychiatric disorders. These results implicate immune-thrombotic dysregulation as a critical component of SCZ pathology, with PTMs of immune proteins serving as quantifiable disease indicators. Our work delineates a robust computational strategy for multi-omics integration into psychiatric research, offering biomarker candidates that warrant further validation for diagnostic and therapeutic applications.

摘要

精神分裂症(SCZ)是一种复杂的精神疾病,其分子基础具有异质性,传统的单组学方法对此仍难以解析,这限制了生物标志物的发现和对发病机制的深入理解。为了填补这一空白,我们将人工智能(AI)驱动的多组学框架应用于一个开放获取的数据集,该数据集包含血浆蛋白质组学、翻译后修饰(PTM)和代谢组学,以系统地剖析SCZ的病理生理学。在一个由104名个体组成的队列中,对17种机器学习模型的比较分析表明,多组学整合显著提高了分类性能,使用LightGBMXT时最大AUC达到0.9727(95%CI:0.8889 - 1.000),而仅使用蛋白质组学的CNNBiLSTM时AUC为0.9636(95%CI:0.8636 - 1.0000)。可解释的特征优先级排序确定了免疫球蛋白恒定区位点IGKC_K20和IGHG1_K8处的氨甲酰化,以及凝血因子F10在残基M8处的氧化,作为关键的判别分子事件。功能分析确定了显著富集的通路,包括补体激活、血小板信号传导和肠道微生物群相关代谢。蛋白质相互作用网络进一步表明凝血因子F2、F10和PLG,以及补体调节因子CFI和C9是核心分子枢纽。这些分子的聚类突出了一个潜在的轴,将免疫激活、血液凝固和组织稳态联系起来,这些生物学领域在精神疾病中越来越受到认可。这些结果表明免疫 - 血栓调节异常是SCZ病理的关键组成部分,免疫蛋白的PTM可作为可量化的疾病指标。我们的工作描绘了一种强大的计算策略,用于将多组学整合到精神疾病研究中,提供了有待进一步验证用于诊断和治疗应用的生物标志物候选物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3115/12347864/11b0990d0334/ijms-26-07640-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3115/12347864/43950c6111a5/ijms-26-07640-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3115/12347864/abca3292c37a/ijms-26-07640-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3115/12347864/608ca5ed6383/ijms-26-07640-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3115/12347864/bd05051839ee/ijms-26-07640-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3115/12347864/11b0990d0334/ijms-26-07640-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3115/12347864/43950c6111a5/ijms-26-07640-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3115/12347864/abca3292c37a/ijms-26-07640-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3115/12347864/608ca5ed6383/ijms-26-07640-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3115/12347864/bd05051839ee/ijms-26-07640-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3115/12347864/11b0990d0334/ijms-26-07640-g005.jpg

相似文献

[1]
A Multi-Omics Integration Framework with Automated Machine Learning Identifies Peripheral Immune-Coagulation Biomarkers for Schizophrenia Risk Stratification.

Int J Mol Sci. 2025-8-7

[2]
An open dataset and machine learning algorithms for Niacin Skin-Flushing Response based screening of psychiatric disorders.

BMC Psychiatry. 2025-8-4

[3]
Precision Neuro-Oncology in Glioblastoma: AI-Guided CRISPR Editing and Real-Time Multi-Omics for Genomic Brain Surgery.

Int J Mol Sci. 2025-7-30

[4]
A robust diagnostic model for high-risk MASH: integrating clinical parameters and circulating biomarkers through a multi-omics approach.

Hepatol Int. 2025-4-9

[5]
Integrative multi-omics and machine-learning approaches uncover a novel metabolic-related signature associated with cancer-associated fibroblasts in gastric cancer development.

Comput Biol Med. 2025-6-20

[6]
Multi-omics signature of healthy versus unhealthy lifestyles reveals associations with diseases.

Hum Genomics. 2025-8-30

[7]
Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.

Front Immunol. 2025-6-9

[8]
Integrated multi-omics analysis reveals the functional signature of microbes and metabolomics in pre-diabetes individuals.

Microbiol Spectr. 2025-7

[9]
MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols.

Alzheimers Dement. 2021-4

[10]
ImmuProgML: machine learning-based dissection of cancer-immune dynamics during tumor progression to improve immunotherapy.

J Transl Med. 2025-7-25

本文引用的文献

[1]
Interpretable machine learning-guided single-cell mapping deciphers multi-lineage pancreatic dysregulation in type 2 diabetes.

Cardiovasc Diabetol. 2025-7-24

[2]
BertADP: a fine-tuned protein language model for anti-diabetic peptide prediction.

BMC Biol. 2025-7-15

[3]
NeXtMD: a new generation of machine learning and deep learning stacked hybrid framework for accurate identification of anti-inflammatory peptides.

BMC Biol. 2025-7-15

[4]
NeuroScale: evolutional scale-based protein language models enable prediction of neuropeptides.

BMC Biol. 2025-5-28

[5]
PlantEMS: A comprehensive database of epigenetic modification sites across multiple plant species.

Plant Commun. 2025-4-14

[6]
Integrated Transcriptome Analysis Reveals Novel Molecular Signatures for Schizophrenia Characterization.

Adv Sci (Weinh). 2025-1

[7]
Neuroscience in Pictures: 3. Schizophrenia.

Asian J Psychiatr. 2024-12

[8]
Psychological and psychosocial interventions for treatment-resistant schizophrenia: a systematic review and network meta-analysis.

Lancet Psychiatry. 2024-7

[9]
Genetic Implication of Prenatal GABAergic and Cholinergic Neuron Development in Susceptibility to Schizophrenia.

Schizophr Bull. 2024-8-27

[10]
Unraveling the Prefrontal Cortex-Basolateral Amygdala Pathway's Role on Schizophrenia's Cognitive Impairments: A Multimodal Study in Patients and Mouse Models.

Schizophr Bull. 2024-7-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索