Xie Xueqin, Wu Changchun, Yang Yuhe, Su Wei, Dao Fuying, Huang Jian, Shi Zheng, Lyu Hao, Lin Hao
Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore.
Cardiovasc Diabetol. 2025 Jul 24;24(1):300. doi: 10.1186/s12933-025-02865-8.
Pancreatic cellular heterogeneity is fundamental to systemic metabolic regulation, yet its pathological remodeling in diabetes remains poorly characterized.
We integrated single-cell RNA sequencing with machine learning frameworks to decode pancreatic heterogeneity. Novel tools included PanSubPred (two-stage feature selection/XGBoost classifier) for multi-lineage annotation and PSC-Stat (XGBoost/Gini optimization) for stellate cell activation analysis.
By establishing PanSubPred, we systematically decoded pancreatic cellular diversity, identifying 64 cell-type-specific markers (38 novel) that maintained cross-dataset accuracy (AUC > 0.970) even after excluding known canonical markers. Building on this annotation precision, we developed PSC-Stat to quantify stellate cell activation dynamics, revealing their progressive activation from diabetes to pancreatic cancer (activated/quiescent ratio: control: 1.44 ± 1.02, diabetes: 4.72 ± 4.01, pancreatic cancer: 18.67 ± 18.70). Diabetes reorganized intercellular communication into ductal-centric hubs via FGF7-FGFR2/3, EFNB3-EPHB2/4/6 and EFNA5-EPHA2 axes, from which we derived a 15-gene signature for diabetic ductal cells (AUC = 0.846). Beta cell heterogeneity analysis uncovered diabetes-associated depletion of mature insulin-secretory clusters (INS + NKX6-1+), expansion of immature (CD81 + RBP4+) and endoplasmic reticulum stress-adapted subtypes (DDIT3 + HSPA5+). Moreover, non-beta lineages exhibited parallel dysfunction: acinar cells shifted toward inflammatory states (CCL2 + CXCL17+), while ductal cells adopted secretory phenotypes (MUC1 + CFTR+).
This study presents a machine learning-based single-cell framework that systematically maps pancreatic cellular alterations in diabetes. The identified novel signatures, stellate activation dynamics, and beta cell maturation trajectories may serve as potential targets for diabetic management and pancreatic cancer risk stratification.
胰腺细胞异质性是全身代谢调节的基础,但其在糖尿病中的病理重塑仍未得到充分表征。
我们将单细胞RNA测序与机器学习框架相结合,以解码胰腺异质性。新工具包括用于多谱系注释的PanSubPred(两阶段特征选择/XGBoost分类器)和用于星状细胞激活分析的PSC-Stat(XGBoost/基尼优化)。
通过建立PanSubPred,我们系统地解码了胰腺细胞多样性,鉴定出64种细胞类型特异性标志物(38种新标志物),即使在排除已知的经典标志物后,这些标志物仍保持跨数据集准确性(AUC>0.970)。基于这种注释精度,我们开发了PSC-Stat来量化星状细胞激活动态,揭示它们从糖尿病到胰腺癌的渐进激活(激活/静止比率:对照:1.44±1.02,糖尿病:4.72±4.01,胰腺癌:18.67±18.70)。糖尿病通过FGF7-FGFR2/3、EFNB3-EPHB2/4/6和EFNA5-EPHA2轴将细胞间通讯重组为以导管为中心的枢纽,从中我们得出了糖尿病导管细胞的15基因特征(AUC=0.846)。β细胞异质性分析发现糖尿病相关的成熟胰岛素分泌簇(INS+NKX6-1+)减少,未成熟(CD81+RBP4+)和内质网应激适应亚型(DDIT3+HSPA5+)扩张。此外,非β谱系表现出平行功能障碍:腺泡细胞向炎症状态转变(CCL2+CXCL17+),而导管细胞呈现分泌表型(MUC1+CFTR+)。
本研究提出了一种基于机器学习的单细胞框架,该框架系统地绘制了糖尿病中胰腺细胞的变化。所确定的新特征、星状细胞激活动态和β细胞成熟轨迹可能作为糖尿病管理和胰腺癌风险分层的潜在靶点。