使用机器学习算法对放牧牲畜行为进行时空映射

Spatiotemporal Mapping of Grazing Livestock Behaviours Using Machine Learning Algorithms.

作者信息

Ye Guo, Yu Rui

机构信息

School of Ecology, Hainan University, Haikou 570228, China.

Department of Geography, The University of Manchester, Manchester M13 9PL, UK.

出版信息

Sensors (Basel). 2025 Jul 23;25(15):4561. doi: 10.3390/s25154561.

Abstract

Grassland ecosystems are fundamentally shaped by the complex behaviours of livestock. While most previous studies have monitored grassland health using vegetation indices, such as NDVI and LAI, fewer have investigated livestock behaviours as direct drivers of grassland degradation. In particular, the spatial clustering and temporal concentration patterns of livestock behaviours are critical yet underexplored factors that significantly influence grassland ecosystems. This study investigated the spatiotemporal patterns of livestock behaviours under different grazing management systems and grazing-intensity gradients (GIGs) in Wenchang, China, using high-resolution GPS tracking data and machine learning classification. the K-Nearest Neighbours (KNN) model combined with SMOTE-ENN resampling achieved the highest accuracy, with F1-scores of 0.960 and 0.956 for continuous and rotational grazing datasets. The results showed that the continuous grazing system failed to mitigate grazing pressure when grazing intensity was reduced, as the spatial clustering of livestock behaviours did not decrease accordingly, and the frequency of temporal peaks in grazing behaviour even showed an increasing trend. Conversely, the rotational grazing system responded more effectively, as reduced GIGs led to more evenly distributed temporal activity patterns and lower spatial clustering. These findings highlight the importance of incorporating livestock behavioural patterns into grassland monitoring and offer data-driven insights for sustainable grazing management.

摘要

草原生态系统从根本上受到牲畜复杂行为的影响。虽然此前大多数研究使用植被指数(如归一化植被指数和叶面积指数)来监测草原健康状况,但较少有研究将牲畜行为作为草原退化的直接驱动因素进行调查。特别是,牲畜行为的空间聚类和时间集中模式是显著影响草原生态系统的关键因素,但尚未得到充分研究。本研究利用高分辨率GPS跟踪数据和机器学习分类方法,在中国文昌调查了不同放牧管理系统和放牧强度梯度(GIGs)下牲畜行为的时空模式。结合SMOTE-ENN重采样的K近邻(KNN)模型取得了最高准确率,连续放牧数据集和轮牧数据集的F1分数分别为0.960和0.956。结果表明,当放牧强度降低时,连续放牧系统未能减轻放牧压力,因为牲畜行为的空间聚类并未相应减少,放牧行为的时间峰值频率甚至呈上升趋势。相反,轮牧系统的响应更为有效,因为较低的GIGs导致时间活动模式分布更均匀,空间聚类更低。这些发现凸显了将牲畜行为模式纳入草原监测的重要性,并为可持续放牧管理提供了数据驱动的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7dd/12349537/2d73d0b97bab/sensors-25-04561-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索