Chen Keran, Li Longnan, Peng Qinyao, He Mengyuan, Ma Liyun, Li Xinxin, Lu Zhenyu
School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.
Sensors (Basel). 2025 Jul 25;25(15):4602. doi: 10.3390/s25154602.
Sign language recognition plays a crucial role in enabling communication for deaf individuals, yet current methods face limitations such as sensitivity to lighting conditions, occlusions, and lack of adaptability in diverse environments. This study presents a wearable multi-channel tactile sensing system based on smart textiles, designed to capture subtle wrist and finger motions for static sign language recognition. The system leverages triboelectric yarns sewn into gloves and sleeves to construct a skin-conformal tactile sensor array, capable of detecting biomechanical interactions through contact and deformation. Unlike vision-based approaches, the proposed sensor platform operates independently of environmental lighting or occlusions, offering reliable performance in diverse conditions. Experimental validation on American Sign Language letter gestures demonstrates that the proposed system achieves high signal clarity after customized filtering, leading to a classification accuracy of 94.66%. Experimental results show effective recognition of complex gestures, highlighting the system's potential for broader applications in human-computer interaction.
手语识别在促进聋人交流方面发挥着关键作用,但目前的方法存在一些局限性,如对光照条件、遮挡敏感,以及在不同环境中缺乏适应性。本研究提出了一种基于智能纺织品的可穿戴多通道触觉传感系统,旨在捕捉微妙的手腕和手指动作以进行静态手语识别。该系统利用缝在手套和袖子里的摩擦电纱线构建了一个贴合皮肤的触觉传感器阵列,能够通过接触和变形检测生物力学相互作用。与基于视觉的方法不同,所提出的传感器平台的运行不受环境光照或遮挡的影响,在各种条件下都能提供可靠的性能。对美国手语字母手势的实验验证表明,所提出的系统在经过定制滤波后实现了高信号清晰度,分类准确率达到94.66%。实验结果表明该系统能够有效识别复杂手势,凸显了其在人机交互中更广泛应用的潜力。