文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于自动检测突出肠鸣音的新型“你只听一次”(YOLO)深度学习模型:健康受试者的可行性研究

A Novel You Only Listen Once (YOLO) Deep Learning Model for Automatic Prominent Bowel Sounds Detection: Feasibility Study in Healthy Subjects.

作者信息

Kalahasty Rohan, Yerrapragada Gayathri, Lee Jieun, Gopalakrishnan Keerthy, Kaur Avneet, Muddaloor Pratyusha, Sood Divyanshi, Parikh Charmy, Gohri Jay, Panjwani Gianeshwaree Alias Rachna, Asadimanesh Naghmeh, Ansari Rabiah Aslam, Rapolu Swetha, Elangovan Poonguzhali, Karuppiah Shiva Sankari, Dasari Vijaya M, Helgeson Scott A, Akshintala Venkata S, Arunachalam Shivaram P

机构信息

Digital Engineering & Artificial Intelligence Laboratory (DEAL), Mayo Clinic, Jacksonville, FL 32224, USA.

Department of Internal Medicine, Wright Medical Center, Scranton, PA 18503, USA.

出版信息

Sensors (Basel). 2025 Jul 31;25(15):4735. doi: 10.3390/s25154735.


DOI:10.3390/s25154735
PMID:40807899
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12349269/
Abstract

Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low clinical value in diagnosis. Interpretation of the acoustic characteristics of BSs, i.e., using a phonoenterogram (PEG), may aid in diagnosing various GI conditions non-invasively. Use of artificial intelligence (AI) and improvements in computational analysis can enhance the use of PEGs in different GI diseases and lead to a non-invasive, cost-effective diagnostic modality that has not been explored before. The purpose of this work was to develop an automated AI model, You Only Listen Once (YOLO), to detect prominent bowel sounds that can enable real-time analysis for future GI disease detection and diagnosis. A total of 110 2-minute PEGs sampled at 44.1 kHz were recorded using the Eko DUO stethoscope from eight healthy volunteers at two locations, namely, left upper quadrant (LUQ) and right lower quadrant (RLQ) after IRB approval. The datasets were annotated by trained physicians, categorizing BSs as prominent or obscure using version 1.7 of Label Studio Software. Each BS recording was split up into 375 ms segments with 200 ms overlap for real-time BS detection. Each segment was binned based on whether it contained a prominent BS, resulting in a dataset of 36,149 non-prominent segments and 6435 prominent segments. Our dataset was divided into training, validation, and test sets (60/20/20% split). A 1D-CNN augmented transformer was trained to classify these segments via the input of Mel-frequency cepstral coefficients. The developed AI model achieved area under the receiver operating curve (ROC) of 0.92, accuracy of 86.6%, precision of 86.85%, and recall of 86.08%. This shows that the 1D-CNN augmented transformer with Mel-frequency cepstral coefficients achieved creditable performance metrics, signifying the YOLO model's capability to classify prominent bowel sounds that can be further analyzed for various GI diseases. This proof-of-concept study in healthy volunteers demonstrates that automated BS detection can pave the way for developing more intuitive and efficient AI-PEG devices that can be trained and utilized to diagnose various GI conditions. To ensure the robustness and generalizability of these findings, further investigations encompassing a broader cohort, inclusive of both healthy and disease states are needed.

摘要

胃肠道(GI)疾病的准确诊断通常需要侵入性检查或影像学研究,这些检查存在各种术后并发症的风险或涉及辐射暴露。肠鸣音(BSs)虽然通常在以胃肠道为重点的体格检查中被描述,但准确性极低且变化很大,在诊断中临床价值不大。对肠鸣音的声学特征进行解读,即使用肠音图(PEG),可能有助于非侵入性地诊断各种胃肠道疾病。人工智能(AI)的应用和计算分析的改进可以提高PEG在不同胃肠道疾病中的应用,并带来一种前所未有的非侵入性、经济高效的诊断方式。这项工作的目的是开发一种自动人工智能模型,即“你只需听一次”(YOLO),以检测突出的肠鸣音,从而实现对未来胃肠道疾病检测和诊断的实时分析。在获得机构审查委员会(IRB)批准后,使用Eko DUO听诊器从8名健康志愿者的两个部位,即左上腹(LUQ)和右下腹(RLQ),共采集了110个以44.1 kHz采样的2分钟肠音图。数据集由训练有素的医生进行标注,使用Label Studio软件1.7版本将肠鸣音分类为突出或不明显。每个肠鸣音记录被分割成375毫秒的片段,重叠200毫秒用于实时肠鸣音检测。每个片段根据是否包含突出的肠鸣音进行分类,从而得到一个包含36149个非突出片段和6435个突出片段的数据集。我们的数据集被分为训练集、验证集和测试集(60/20/20%的划分)。通过输入梅尔频率倒谱系数,训练一个1D-CNN增强变压器对这些片段进行分类。所开发的人工智能模型在受试者操作特征曲线(ROC)下的面积为0.92,准确率为86.6%,精确率为86.85%,召回率为86.08%。这表明具有梅尔频率倒谱系数的1D-CNN增强变压器取得了可信的性能指标,表明YOLO模型有能力对突出的肠鸣音进行分类,这些肠鸣音可用于进一步分析各种胃肠道疾病。这项在健康志愿者中进行的概念验证研究表明,自动肠鸣音检测可为开发更直观、高效的人工智能-肠音图设备铺平道路,这些设备可经过训练并用于诊断各种胃肠道疾病。为确保这些发现的稳健性和普遍性,需要进行更广泛的研究,包括更广泛的人群,涵盖健康和疾病状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e45/12349269/ad54f5ab7248/sensors-25-04735-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e45/12349269/25053b24fc80/sensors-25-04735-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e45/12349269/286eda99e332/sensors-25-04735-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e45/12349269/636ac5cc0afb/sensors-25-04735-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e45/12349269/d4c1ff6a6e99/sensors-25-04735-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e45/12349269/ad54f5ab7248/sensors-25-04735-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e45/12349269/25053b24fc80/sensors-25-04735-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e45/12349269/286eda99e332/sensors-25-04735-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e45/12349269/636ac5cc0afb/sensors-25-04735-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e45/12349269/d4c1ff6a6e99/sensors-25-04735-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e45/12349269/ad54f5ab7248/sensors-25-04735-g005.jpg

相似文献

[1]
A Novel You Only Listen Once (YOLO) Deep Learning Model for Automatic Prominent Bowel Sounds Detection: Feasibility Study in Healthy Subjects.

Sensors (Basel). 2025-7-31

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[4]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[5]
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.

JBJS Essent Surg Tech. 2025-8-15

[6]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[7]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[8]
Sexual Harassment and Prevention Training

2025-1

[9]
Short-Term Memory Impairment

2025-1

[10]
DeePosit, an AI-based tool for detecting mouse urine and fecal depositions from thermal video clips of behavioral experiments.

Elife. 2025-8-28

本文引用的文献

[1]
Practicing Digital Gastroenterology through Phonoenterography Leveraging Artificial Intelligence: Future Perspectives Using Microwave Systems.

Sensors (Basel). 2023-2-18

[2]
Tools for the Diagnosis and Management of Crohn's Disease.

Gastroenterol Clin North Am. 2022-6

[3]
Flexible Dual-Channel Digital Auscultation Patch With Active Noise Reduction for Bowel Sound Monitoring and Application.

IEEE J Biomed Health Inform. 2022-7

[4]
Development of a bowel sound detector adapted to demonstrate the effect of food intake.

Biomed Eng Online. 2022-1-4

[5]
Analysis of Gastrointestinal Acoustic Activity Using Deep Neural Networks.

Sensors (Basel). 2021-11-16

[6]
Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2021.

Gastroenterology. 2022-2

[7]
Postoperative Ileus.

Clin Colon Rectal Surg. 2019-5

[8]
Artificial intelligence in gastrointestinal endoscopy: The future is almost here.

World J Gastrointest Endosc. 2018-10-16

[9]
The potential of computerised analysis of bowel sounds for diagnosis of gastrointestinal conditions: a systematic review.

Syst Rev. 2018-8-17

[10]
Clinical measurement of gastrointestinal motility and function: who, when and which test?

Nat Rev Gastroenterol Hepatol. 2018-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索