Suppr超能文献

基于深度神经网络的胃肠道声活动分析。

Analysis of Gastrointestinal Acoustic Activity Using Deep Neural Networks.

机构信息

Institute of Computer Science, Warsaw University of Technology, 00-665 Warsaw, Poland.

Graduate School of Information, Production and Systems, Waseda University, Tokyo 169-8050, Japan.

出版信息

Sensors (Basel). 2021 Nov 16;21(22):7602. doi: 10.3390/s21227602.

Abstract

Automated bowel sound (BS) analysis methods were already well developed by the early 2000s. Accuracy of ~90% had been achieved by several teams using various analytical approaches. Clinical research on BS had revealed their high potential in the non-invasive investigation of irritable bowel syndrome to study gastrointestinal motility and in a surgical setting. This article proposes a novel methodology for the analysis of BS using hybrid convolutional and recursive neural networks. It is one of the first methods of using deep learning to be widely explored. We have developed an experimental pipeline and evaluated our results with a new dataset collected using a device with a dedicated contact microphone. Data have been collected at night-time, which is the most interesting period from a neurogastroenterological point of view. Previous works had ignored this period and instead kept brief records only during the day. Our algorithm can detect bowel sounds with an accuracy >93%. Moreover, we have achieved a very high specificity (>97%), crucial in diagnosis. The results have been checked with a medical professional, and they successfully support clinical diagnosis. We have developed a client-server system allowing medical practitioners to upload the recordings from their patients and have them analyzed online. This system is available online. Although BS research is technologically mature, it still lacks a uniform methodology, an international forum for discussion, and an open platform for data exchange, and therefore it is not commonly used. Our server could provide a starting point for establishing a common framework in BS research.

摘要

自动肠鸣音 (BS) 分析方法在 21 世纪初已经相当成熟。几个团队使用各种分析方法已经实现了约 90%的准确率。BS 的临床研究揭示了它们在非侵入性研究肠易激综合征以研究胃肠道动力和在手术环境中的高潜力。本文提出了一种使用混合卷积和递归神经网络分析 BS 的新方法。这是最早广泛探索深度学习的方法之一。我们已经开发了一个实验管道,并使用新的数据集评估了我们的结果,该数据集是使用带有专用接触麦克风的设备收集的。数据是在夜间收集的,从神经胃肠学的角度来看,这是最有趣的时期。以前的工作忽略了这个时期,而是只在白天进行简短的记录。我们的算法可以检测到准确率>93%的肠鸣音。此外,我们还实现了>97%的高特异性,这对诊断至关重要。结果已经由一名医学专业人员检查,他们成功地支持了临床诊断。我们开发了一个客户端-服务器系统,允许医疗从业者上传他们的患者的录音,并在线进行分析。该系统已在线提供。尽管 BS 研究在技术上已经成熟,但它仍然缺乏统一的方法、讨论的国际论坛以及开放的数据交换平台,因此并未广泛使用。我们的服务器可以为建立 BS 研究的通用框架提供一个起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9bd/8618847/40b28a4cc6fc/sensors-21-07602-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验