Suppr超能文献

基于奇异值分解的三维光学加密压缩

Compression of 3D Optical Encryption Using Singular Value Decomposition.

作者信息

Park Kyungtae, Lee Min-Chul, Cho Myungjin

机构信息

School of ICT, Robotics, and Mechanical Engineering, IITC, Hankyong National University, 327 Chungang-ro, Anseong 17579, Republic of Korea.

Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi 820-8502, Fukuoka, Japan.

出版信息

Sensors (Basel). 2025 Aug 1;25(15):4742. doi: 10.3390/s25154742.

Abstract

In this paper, we propose a compressionmethod for optical encryption using singular value decomposition (SVD). Double random phase encryption (DRPE), which employs two distinct random phase masks, is adopted as the optical encryption technique. Since the encrypted data in DRPE have the same size as the input data and consists of complex values, a compression technique is required to improve data efficiency. To address this issue, we introduce SVD as a compression method. SVD decomposes any matrix into simpler components, such as a unitary matrix, a rectangular diagonal matrix, and a complex unitary matrix. By leveraging this property, the encrypted data generated by DRPE can be effectively compressed. However, this compression may lead to some loss of information in the decrypted data. To mitigate this loss, we employ volumetric computational reconstruction based on integral imaging. As a result, the proposed method enhances the visual quality, compression ratio, and security of DRPE simultaneously. To validate the effectiveness of the proposed method, we conduct both computer simulations and optical experiments. The performance is evaluated quantitatively using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and peak sidelobe ratio (PSR) as evaluation metrics.

摘要

在本文中,我们提出了一种使用奇异值分解(SVD)的光学加密压缩方法。采用双随机相位加密(DRPE),它使用两个不同的随机相位掩模作为光学加密技术。由于DRPE中的加密数据与输入数据大小相同且由复数值组成,因此需要一种压缩技术来提高数据效率。为了解决这个问题,我们引入SVD作为一种压缩方法。SVD将任何矩阵分解为更简单的成分,如酉矩阵、矩形对角矩阵和复酉矩阵。利用这一特性,可以有效地压缩由DRPE生成的加密数据。然而,这种压缩可能会导致解密数据中的一些信息丢失。为了减轻这种损失,我们采用基于积分成像的体积计算重建。结果,所提出的方法同时提高了DRPE的视觉质量、压缩率和安全性。为了验证所提方法的有效性,我们进行了计算机模拟和光学实验。使用峰值信噪比(PSNR)、结构相似性指数(SSIM)和峰值旁瓣比(PSR)作为评估指标对性能进行定量评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9736/12349271/b40fb1f5b19b/sensors-25-04742-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验