Suppr超能文献

用于车辆部件检测的增强型YOLO和扫描门户系统

Enhanced YOLO and Scanning Portal System for Vehicle Component Detection.

作者信息

Ye Feng, Yuan Mingzhe, Luo Chen, Li Shuo, Pan Duotao, Wang Wenhong, Cao Feidao, Chen Diwen

机构信息

College of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.

Guangzhou Institute of Industrial Intelligence, Guangzhou 511458, China.

出版信息

Sensors (Basel). 2025 Aug 5;25(15):4809. doi: 10.3390/s25154809.

Abstract

In this paper, a novel online detection system is designed to enhance accuracy and operational efficiency in the outbound logistics of automotive components after production. The system consists of a scanning portal system and an improved YOLOv12-based detection algorithm which captures images of automotive parts passing through the scanning portal in real time. By integrating deep learning, the system enables real-time monitoring and identification, thereby preventing misdetections and missed detections of automotive parts, in this way promoting intelligent automotive part recognition and detection. Our system introduces the A2C2f-SA module, which achieves an efficient feature attention mechanism while maintaining a lightweight design. Additionally, Dynamic Space-to-Depth (Dynamic S2D) is employed to improve convolution and replace the stride convolution and pooling layers in the baseline network, helping to mitigate the loss of fine-grained information and enhancing the network's feature extraction capability. To improve real-time performance, a GFL-MBConv lightweight detection head is proposed. Furthermore, adaptive frequency-aware feature fusion (Adpfreqfusion) is hybridized at the end of the neck network to effectively enhance high-frequency information lost during downsampling, thereby improving the model's detection accuracy for target objects in complex backgrounds. On-site tests demonstrate that the system achieves a comprehensive accuracy of 97.3% and an average vehicle detection time of 7.59 s, exhibiting not only high precision but also high detection efficiency. These results can make the proposed system highly valuable for applications in the automotive industry.

摘要

本文设计了一种新型在线检测系统,以提高汽车零部件生产后 outbound 物流的准确性和运营效率。该系统由扫描门户系统和基于改进的 YOLOv12 的检测算法组成,该算法实时捕捉通过扫描门户的汽车零部件图像。通过集成深度学习,该系统实现了实时监控和识别,从而防止汽车零部件的误检测和漏检测,以此促进汽车零部件的智能识别和检测。我们的系统引入了 A2C2f-SA 模块,该模块在保持轻量级设计的同时实现了高效的特征注意力机制。此外,采用动态空间到深度(Dynamic S2D)来改进卷积并替换基线网络中的步长卷积和池化层,有助于减轻细粒度信息的损失并增强网络的特征提取能力。为了提高实时性能,提出了一种 GFL-MBConv 轻量级检测头。此外,在颈部网络末端混合了自适应频率感知特征融合(Adpfreqfusion),以有效增强下采样过程中丢失的高频信息,从而提高模型在复杂背景下对目标物体的检测精度。现场测试表明,该系统的综合准确率达到 97.3%,平均车辆检测时间为 7.59 秒,不仅具有高精度,而且具有高检测效率。这些结果使得所提出的系统在汽车行业的应用中具有很高的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d36/12349444/435838f13c66/sensors-25-04809-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验