Gargouri Ameni, Jamoussi Bassem
Mathematics Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11912, Saudi Arabia.
Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Polymers (Basel). 2025 Jul 24;17(15):2019. doi: 10.3390/polym17152019.
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such as fouling and low hydrophilicity. This study investigated the interaction between MPD and sulfonated zinc phthalocyanine, Zn(SO)Pc, as a potential strategy for enhancing membrane properties. Using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT), we analyzed the optimized geometries, electronic structures, UV-Vis absorption spectra, FT-IR vibrational spectra, and molecular electrostatic potentials of MPD, Zn(SO)Pc, and their complexes. The results show that MPD/Zn(SO)Pc exhibits reduced HOMO-LUMO energy gaps and enhanced charge delocalization, particularly in aqueous environments, indicating improved stability and reactivity. Spectroscopic features confirmed strong interactions via hydrogen bonding and π-π stacking, suggesting that Zn(SO)Pc can act as a co-monomer or additive during IPol to improve polyamide membrane functionality. A conformational analysis of MPD/Zn(SO)Pc was conducted using density functional theory (DFT) to evaluate the impact of dihedral rotation on molecular stability. The 120° conformation was identified as the most stable, due to favorable π-π interactions and intramolecular hydrogen bonding. These findings offer computational evidence for the design of high-performance membranes with enhanced antifouling, selectivity, and structural integrity for sustainable water treatment applications.
获得清洁水是一个紧迫的全球问题,而膜技术在应对这一挑战中发挥着至关重要的作用。通过界面聚合(IPol)使用间苯二胺(MPD)和均苯三甲酰氯(TMC)制备的薄膜复合膜表现出优异的分离性能,但面临诸如污染和低亲水性等局限性。本研究调查了MPD与磺化锌酞菁(Zn(SO)Pc)之间的相互作用,作为增强膜性能的一种潜在策略。使用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT),我们分析了MPD、Zn(SO)Pc及其配合物的优化几何结构、电子结构、紫外-可见吸收光谱、傅里叶变换红外振动光谱和分子静电势。结果表明,MPD/Zn(SO)Pc的最高占据分子轨道(HOMO)与最低未占据分子轨道(LUMO)能隙减小,电荷离域增强,特别是在水环境中,表明稳定性和反应性得到改善。光谱特征证实了通过氢键和π-π堆积的强相互作用,表明Zn(SO)Pc在IPol过程中可作为共聚单体或添加剂来改善聚酰胺膜的功能。使用密度泛函理论(DFT)对MPD/Zn(SO)Pc进行了构象分析,以评估二面角旋转对分子稳定性的影响。由于有利的π-π相互作用和分子内氢键,120°构象被确定为最稳定的构象。这些发现为设计具有增强的抗污染、选择性和结构完整性的高性能膜用于可持续水处理应用提供了计算依据。