Suppr超能文献

多中心队列中脑动态对比增强磁共振成像动脉输入函数的自动检测

Automatic detection of arterial input function for brain DCE-MRI in multi-site cohorts.

作者信息

Saca Lucas, Gaggar Raghav, Pappas Ioannis, Benzinger Tammie, Reiman Eric M, Shiroishi Mark S, Joe Elizabeth B, Ringman John M, Yassine Hussein N, Schneider Lon S, Chui Helena C, Nation Daniel A, Zlokovic Berislav V, Toga Arthur W, Chakhoyan Ararat, Barnes Samuel

机构信息

Department of Radiology, Loma Linda University, Loma Linda, California, USA.

Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.

出版信息

Magn Reson Med. 2025 Dec;94(6):2732-2744. doi: 10.1002/mrm.70020. Epub 2025 Aug 13.

Abstract

PURPOSE

Arterial input function (AIF) extraction is a crucial step in quantitative pharmacokinetic modeling of DCE-MRI. This work proposes a robust deep learning model that can precisely extract an AIF from DCE-MRI images.

METHODS

A diverse dataset of human brain DCE-MRI images from 289 participants, totaling 384 scans, from five different institutions with extracted gadolinium-based contrast agent curves from large penetrating arteries, and with most data collected for blood-brain barrier (BBB) permeability measurement, was retrospectively analyzed. A 3D UNet model was implemented and trained on manually drawn AIF regions. The testing cohort was compared using proposed AIF quality metric AIFitness and K values from a standard DCE pipeline. This UNet was then applied to a separate dataset of 326 participants with a total of 421 DCE-MRI images with analyzed AIF quality and K values.

RESULTS

The resulting 3D UNet model achieved an average AIFitness score of 93.9 compared to 99.7 for manually selected AIFs, and white matter K values were 0.45/min × 10 and 0.45/min × 10, respectively. The intraclass correlation between automated and manual K values was 0.89. The separate replication dataset yielded an AIFitness score of 97.0 and white matter K of 0.44/min × 10.

CONCLUSION

Findings suggest a 3D UNet model with additional convolutional neural network kernels and a modified Huber loss function achieves superior performance for identifying AIF curves from DCE-MRI in a diverse multi-center cohort. AIFitness scores and DCE-MRI-derived metrics, such as K maps, showed no significant differences in gray and white matter between manually drawn and automated AIFs.

摘要

目的

动脉输入函数(AIF)提取是动态对比增强磁共振成像(DCE-MRI)定量药代动力学建模中的关键步骤。本研究提出了一种强大的深度学习模型,该模型能够从DCE-MRI图像中精确提取AIF。

方法

回顾性分析了来自五个不同机构的289名参与者的人脑DCE-MRI图像的多样数据集,共计384次扫描,这些图像提取了来自大的穿通动脉的基于钆的造影剂曲线,并且大多数数据用于血脑屏障(BBB)通透性测量。实施了一个3D UNet模型,并在手动绘制的AIF区域上进行训练。使用提出的AIF质量指标AIFitness和来自标准DCE流程的K值对测试队列进行比较。然后将此UNet应用于另一个包含326名参与者、共计421幅DCE-MRI图像的单独数据集,并分析了AIF质量和K值。

结果

所得的3D UNet模型的平均AIFitness评分为93.9,而手动选择的AIF评分为99.7,白质K值分别为0.45/min×10和0.45/min×10。自动和手动K值之间的组内相关性为0.89。单独的复制数据集产生的AIFitness评分为97.0,白质K值为0.44/min×10。

结论

研究结果表明,具有额外卷积神经网络内核和改进的Huber损失函数的3D UNet模型在识别来自不同多中心队列的DCE-MRI的AIF曲线方面具有卓越性能。AIFitness评分和DCE-MRI衍生指标(如K图)显示,手动绘制和自动生成的AIF在灰质和白质之间无显著差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验