血管性痴呆中伴侣蛋白介导的免疫-蛋白稳态串扰的多组学探索及诊断生物标志物的鉴定
Multi-omics exploration of chaperone-mediated immune-proteostasis crosstalk in vascular dementia and identification of diagnostic biomarkers.
作者信息
Li Wentong, Zhang Yiyi, Li Chuanhong, Jiang Mingyang, Wang Dong, Chao Luomeng, Yang Yuxia
机构信息
College of Computer Science and Technology, Inner Mongolia MINZU University, Tongliao, China.
Department Oncology of Mongolian-Western Medicine, Affiliated Hospital of Inner Mongolia MINZU University, Tongliao, China.
出版信息
Front Immunol. 2025 Jul 30;16:1615540. doi: 10.3389/fimmu.2025.1615540. eCollection 2025.
INTRODUCTION
Vascular dementia (VaD), the second most prevalent form of dementia globally, remains insufficiently understood in terms of its molecular mechanisms and diagnostic biomarkers. This study aims to elucidate the regulatory network and diagnostic potential of the molecular chaperone system in VaD through the integration of multi-omics data and machine learning algorithms.
METHODS
Transcriptomic data from frontal and temporal cortex (GSE122063, n=15)and white matter (GSE282111, n=8) samples were obtained from the GEO database. Differentially expressed genes (DEGs) were identified using the limma package (log2FC>0.656, 0.05). Protein-protein interaction (PPI) networks were constructed using the STRING database. Biomarker validation was performed through cross-validation using LASSO, SVM-RFE, and Random Forest algorithms. Immune microenvironment analysis was conducted using CIBERSORT, while single-cell transcriptomics was analyzed within the Seurat framework.
RESULTS
A total of 897 DEGs were identified, with functional enrichment analysis revealing significant involvement in T cell activation (2.84×10), neuroactive ligand-receptor interaction (6.01×10), and osteoclast differentiation (NES=2.83). PPI network analysis identified HSP90AA1, HSPA1B, and DNAJB1 as core hub genes (degree centrality >20). Machine learning validation demonstrated their combined exceptional diagnostic efficacy (AUC=0.963, F1 = 0.88). Immune analysis revealed that this molecular chaperone axis modulates neuroinflammation by suppressing naive B cell differentiation (61% reduction) and activating Tregs (55.53% increase). Single-cell resolution analysis showed HSP90AA1 to be specifically overexpressed in oligodendrocytes (72.23%), significantly correlating with glial depletion (4.56% decrease in oligodendrocytes, 0.01) and aberrant neuronal proliferation (144.23% increase, 0.0032). experiments utilized a bilateral common carotid artery stenosis (BCAS) mouse model to simulate human vascular dementia (VaD), with further validation through Morris water maze testing. The BCAS group exhibited significantly upregulated mRNA expression of , , and , consistent with integrated bioinformatics analysis results.
CONCLUSION
This study elucidates the HSP90AA1-HSPA1B-DNAJB1 network as a key driver of VaD pathogenesis through dual mechanisms of protein homeostasis and immune reprogramming. The diagnostic performance of this network significantly surpasses traditional biomarkers (ΔAUC≥14.3%), offering novel targets for precision diagnostics and therapeutics. However, further validation with larger cohorts is necessary to assess its clinical translational potential.
引言
血管性痴呆(VaD)是全球第二常见的痴呆形式,但其分子机制和诊断生物标志物仍未得到充分了解。本研究旨在通过整合多组学数据和机器学习算法,阐明分子伴侣系统在VaD中的调控网络和诊断潜力。
方法
从基因表达综合数据库(GEO)中获取额叶和颞叶皮质(GSE122063,n = 15)以及白质(GSE282111,n = 8)样本的转录组数据。使用limma软件包(log2FC>0.656,P<0.05)鉴定差异表达基因(DEG)。使用STRING数据库构建蛋白质-蛋白质相互作用(PPI)网络。通过使用套索回归(LASSO)、支持向量机递归特征消除(SVM-RFE)和随机森林算法进行交叉验证来进行生物标志物验证。使用CIBERSORT进行免疫微环境分析,同时在Seurat框架内分析单细胞转录组学。
结果
共鉴定出897个DEG,功能富集分析显示其显著参与T细胞活化(2.84×10)、神经活性配体-受体相互作用(6.01×10)和破骨细胞分化(标准化富集分数[NES]=2.83)。PPI网络分析确定热休克蛋白90α家族成员1(HSP90AA1)、热休克蛋白A1B(HSPA1B)和DNAJ热休克蛋白家族成员B1(DNAJB1)为核心枢纽基因(度中心性>20)。机器学习验证表明它们具有联合的卓越诊断效能(曲线下面积[AUC]=0.963,F1值=0.88)。免疫分析表明,该分子伴侣轴通过抑制幼稚B细胞分化(减少61%)和激活调节性T细胞(增加55.53%)来调节神经炎症。单细胞分辨率分析显示HSP90AA1在少突胶质细胞中特异性过表达(72.23%),与神经胶质细胞减少(少突胶质细胞减少4.56%,P=0.01)和异常神经元增殖(增加144.23%,P=0.0032)显著相关。实验利用双侧颈总动脉狭窄(BCAS)小鼠模型模拟人类血管性痴呆(VaD),并通过莫里斯水迷宫测试进一步验证。BCAS组中HSP90AA1、HSPA1B和DNAJB1的mRNA表达显著上调,与综合生物信息学分析结果一致。
结论
本研究阐明了HSP90AA1-HSPA1B-DNAJB1网络是通过蛋白质稳态和免疫重编程的双重机制成为VaD发病机制的关键驱动因素。该网络的诊断性能显著超过传统生物标志物(ΔAUC≥14.3%),为精准诊断和治疗提供了新的靶点。然而,需要用更大的队列进行进一步验证,以评估其临床转化潜力。
相似文献
Biochem Biophys Res Commun. 2025-6-14
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2025-3-28
本文引用的文献
Mol Neurobiol. 2025-3-19
Comput Methods Biomech Biomed Engin. 2025-1-21
Alzheimers Dement (N Y). 2024-4-22