文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

小胶质细胞衍生细胞外囊泡在中枢神经系统损伤和疾病中的阴阳两面。

The Yin and Yang of Microglia-Derived Extracellular Vesicles in CNS Injury and Diseases.

机构信息

The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.

The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.

出版信息

Cells. 2024 Nov 6;13(22):1834. doi: 10.3390/cells13221834.


DOI:10.3390/cells13221834
PMID:39594583
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11592485/
Abstract

Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining neural homeostasis but can also contribute to disease and injury when this state is disrupted or conversely play a pivotal role in neurorepair. One way that microglia exert their effects is through the secretion of small vesicles, microglia-derived exosomes (MGEVs). Exosomes facilitate intercellular communication through transported cargoes of proteins, lipids, RNA, and other bioactive molecules that can alter the behavior of the cells that internalize them. Under normal physiological conditions, MGEVs are essential to homeostasis, whereas the dysregulation of their production and/or alterations in their cargoes have been implicated in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), spinal cord injury (SCI), and traumatic brain injury (TBI). In contrast, MGEVs may also offer therapeutic potential by reversing inflammation or being amenable to engineering for the delivery of beneficial biologics or drugs. The effects of MGEVs are determined by the phenotypic state of the parent microglia. Exosomes from anti-inflammatory or pro-regenerative microglia support neurorepair and cell survival by delivering neurotrophic factors, anti-inflammatory mediators, and molecular chaperones. Further, MGEVs can also deliver components like mitochondrial DNA (mtDNA) and proteins to damaged neurons to enhance cellular metabolism and resilience. MGEVs derived from pro-inflammatory microglia can have detrimental effects on neural health. Their cargo often contains pro-inflammatory cytokines, molecules involved in oxidative stress, and neurotoxic proteins, which can exacerbate neuroinflammation, contribute to neuronal damage, and impair synaptic function, hindering neurorepair processes. The role of MGEVs in neurodegeneration and injury-whether beneficial or harmful-largely depends on how they modulate inflammation through the pro- and anti-inflammatory factors in their cargo, including cytokines and microRNAs. In addition, through the propagation of pathological proteins, such as amyloid-beta and alpha-synuclein, MGEVs can also contribute to disease progression in disorders such as AD and PD, or by the transfer of apoptotic or necrotic factors, they can induce neuron toxicity or trigger glial scarring during neurological injury. In this review, we have provided a comprehensive and up-to-date understanding of the molecular mechanisms underlying the multifaceted role of MGEVs in neurological injury and disease. In particular, the role that specific exosome cargoes play in various pathological conditions, either in disease progression or recovery, will be discussed. The therapeutic potential of MGEVs has been highlighted including potential engineering methodologies that have been employed to alter their cargoes or cell-selective targeting. Understanding the factors that influence the balance between beneficial and detrimental exosome signaling in the CNS is crucial for developing new therapeutic strategies for neurodegenerative diseases and neurotrauma.

摘要

小胶质细胞是中枢神经系统 (CNS) 的固有免疫细胞,在维持神经内稳态方面发挥着关键作用,但在这种状态被打乱时,也会导致疾病和损伤,或者在神经修复中发挥关键作用。小胶质细胞发挥作用的一种方式是通过分泌小泡,即小胶质细胞衍生的外泌体 (MGEV)。外泌体通过运输蛋白质、脂质、RNA 和其他生物活性分子等货物来促进细胞间通讯,这些货物可以改变内化它们的细胞的行为。在正常生理条件下,MGEV 对维持内稳态至关重要,而其产生的失调和/或货物的改变已被牵连到许多神经退行性疾病的发病机制中,包括阿尔茨海默病 (AD)、帕金森病 (PD)、多发性硬化症 (MS)、脊髓损伤 (SCI) 和创伤性脑损伤 (TBI)。相比之下,MGEV 通过逆转炎症或可接受工程改造以递送至有益的生物制品或药物,也可能具有治疗潜力。MGEV 的作用取决于亲代小胶质细胞的表型状态。来自抗炎或促修复的小胶质细胞的外泌体通过递送神经营养因子、抗炎介质和分子伴侣来支持神经修复和细胞存活。此外,MGEV 还可以向受损神经元输送线粒体 DNA (mtDNA) 和蛋白质等成分,以增强细胞代谢和恢复能力。来自促炎小胶质细胞的 MGEV 可能对神经健康产生有害影响。它们的货物通常包含促炎细胞因子、参与氧化应激的分子和神经毒性蛋白,这些物质可以加剧神经炎症、导致神经元损伤和损害突触功能,从而阻碍神经修复过程。MGEV 在神经退行性变和损伤中的作用——无论是有益的还是有害的——在很大程度上取决于它们如何通过货物中的促炎和抗炎因子来调节炎症,这些因子包括细胞因子和 microRNAs。此外,MGEV 通过传播病理性蛋白,如淀粉样β和α-突触核蛋白,也可以促进 AD 和 PD 等疾病的进展,或者通过传递凋亡或坏死因子,诱导神经元毒性或在神经损伤时引发神经胶质瘢痕形成。在这篇综述中,我们全面和最新地了解了 MGEV 在神经损伤和疾病中的多方面作用的分子机制。特别是,我们将讨论各种病理条件下特定外泌体货物在疾病进展或恢复中所发挥的作用。MGEV 的治疗潜力已被强调,包括已采用的改变其货物或细胞选择性靶向的潜在工程方法。了解影响中枢神经系统中有益和有害外泌体信号平衡的因素对于开发神经退行性疾病和神经创伤的新治疗策略至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4232/11592485/d9004422e6a5/cells-13-01834-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4232/11592485/727989300538/cells-13-01834-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4232/11592485/a5665316db32/cells-13-01834-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4232/11592485/555c702a5a9a/cells-13-01834-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4232/11592485/a3983e20a08b/cells-13-01834-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4232/11592485/d9004422e6a5/cells-13-01834-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4232/11592485/727989300538/cells-13-01834-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4232/11592485/a5665316db32/cells-13-01834-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4232/11592485/555c702a5a9a/cells-13-01834-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4232/11592485/a3983e20a08b/cells-13-01834-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4232/11592485/d9004422e6a5/cells-13-01834-g005.jpg

相似文献

[1]
The Yin and Yang of Microglia-Derived Extracellular Vesicles in CNS Injury and Diseases.

Cells. 2024-11-6

[2]
Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer's disease.

J Neurovirol. 2019-1-4

[3]
Brain incoming call from glia during neuroinflammation: Roles of extracellular vesicles.

Neurobiol Dis. 2024-10-15

[4]
Microglia-derived extracellular vesicles in Alzheimer's Disease: A double-edged sword.

Biochem Pharmacol. 2018-1-3

[5]
Vesicular Transport of Encapsulated microRNA between Glial and Neuronal Cells.

Int J Mol Sci. 2020-7-18

[6]
Microglial Exosomes in Neurodegenerative Disease.

Front Mol Neurosci. 2021-5-11

[7]
Whispers in the Brain: Extracellular Vesicles in Neuropathology and the Diagnostic Alchemy of Neurological Diseases.

Eur J Neurosci. 2025-4

[8]
Regulation of nerve cells and therapeutic potential in central nervous system injury using microglia-derived exosomes.

Neuroscience. 2024-12-17

[9]
Microglial Extracellular Vesicles as Vehicles for Neurodegeneration Spreading.

Biomolecules. 2021-5-21

[10]
Crosstalk between Microglia and Neurons in Neurotrauma: An Overview of the Underlying Mechanisms.

Curr Neuropharmacol. 2022

引用本文的文献

[1]
Multi-omics exploration of chaperone-mediated immune-proteostasis crosstalk in vascular dementia and identification of diagnostic biomarkers.

Front Immunol. 2025-7-30

[2]
Small Extracellular Vesicles in Neurodegenerative Disease: Emerging Roles in Pathogenesis, Biomarker Discovery, and Therapy.

Int J Mol Sci. 2025-7-26

[3]
Temporal and Severity-Dependent Alterations in Plasma Extracellular Vesicle Profiles Following Spinal Cord Injury.

Cells. 2025-7-11

[4]
The Bidirectional Interplay Between Substances of Abuse and Gut Microbiome Homeostasis.

Life (Basel). 2025-5-22

[5]
Extracellular vesicles as precision therapeutics for psychiatric conditions: targeting interactions among neuronal, glial, and immune networks.

Front Immunol. 2025-4-8

[6]
Nef is a key player in neuroinflammation and myelin impairment associated with neuroHIV.

Front Neurol. 2025-3-12

本文引用的文献

[1]
Treating amyotrophic lateral sclerosis with allogeneic Schwann cell-derived exosomal vesicles: a case report.

Neural Regen Res. 2025-4-1

[2]
Schwann Cell-Derived Exosomes Induced Axon Growth after Spinal Cord Injury by Decreasing PTP-σ Activation on CSPGs via the Rho/ROCK Pathway.

Neurochem Res. 2024-8

[3]
Potential Exosome Biomarkers for Parkinson's Disease Diagnosis: A Systematic Review and Meta-Analysis.

Int J Mol Sci. 2024-5-13

[4]
Antibody-displaying extracellular vesicles for targeted cancer therapy.

Nat Biomed Eng. 2024-11

[5]
Extracellular vesicles mediate inflammasome signaling in the brain and heart of Alzheimer's disease mice.

Front Mol Neurosci. 2024-4-10

[6]
Microglia-derived extracellular vesicles trigger age-related neurodegeneration upon DNA damage.

Proc Natl Acad Sci U S A. 2024-4-23

[7]
Sex Dependent Disparities in the Central Innate Immune Response after Moderate Spinal Cord Contusion in Rat.

Cells. 2024-4-6

[8]
M1-type microglia-derived exosomes contribute to blood-brain barrier damage.

Brain Res. 2024-7-15

[9]
Regulation of cargo selection in exosome biogenesis and its biomedical applications in cancer.

Exp Mol Med. 2024-4

[10]
Human brain small extracellular vesicles contain selectively packaged, full-length mRNA.

Cell Rep. 2024-4-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索