Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China.
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
Eur Radiol. 2024 Apr;34(4):2546-2559. doi: 10.1007/s00330-023-10198-x. Epub 2023 Sep 6.
To determine the value of conventional DWI, continuous-time random walk (CTRW), fractional order calculus (FROC), and stretched exponential model (SEM) in discriminating human epidermal growth factor receptor 2 (HER2) status of breast cancer (BC).
This prospective study included 158 women who underwent DWI, CTRW, FROC, and SEM and were pathologically categorized into the HER2-zero-expressing group (n = 10), HER2-low-expressing group (n = 86), and HER2-overexpressing group (n = 62). Nine diffusion parameters, namely ADC, α, β, D, β, D, μ, α, and DDC of the primary tumor, were derived from four diffusion models. These diffusion metrics and clinicopathologic features were compared between groups. Logistic regression was used to determine the optimal diffusion metrics and clinicopathologic variables for classifying the HER2-expressing statuses. Receiver operating characteristic (ROC) curves were used to evaluate their discriminative ability.
The estrogen receptor (ER) status, progesterone receptor (PR) status, and tumor size differed between HER2-low-expressing and HER2-overexpressing groups (p < 0.001 to p = 0.009). The α, D, β, D, μ, α, and DDC were significantly lower in HER2-low-expressing BCs than those in HER2-overexpressing BCs (p < 0.001 to p = 0.01). Further multivariable logistic regression analysis showed that the α was the single best discriminative metric, with an area under the curve (AUC) being higher than that of ADC (0.802 vs. 0.610, p < 0.05); the addition of ER status, PR status, and tumor size to the α improved the AUC to 0.877.
The α could help discriminate the HER2-low-expressing and HER2-overexpressing BCs.
Human epidermal growth factor receptor 2 (HER2)-low-expressing breast cancer (BC) might also benefit from the HER2-targeted therapy. Prediction of HER2-low-expressing BC or HER2-overexpressing BC is crucial for appropriate management. Advanced continuous-time random walk diffusion MRI offers a solution to this clinical issue.
• Human epidermal receptor 2 (HER2)-low-expressing BC had lower α, D, β, D, μ, α, and DDC values compared with HER2-overexpressing breast cancer. • The α was the single best diffusion metric (AUC = 0.802) for discrimination between the HER2-low-expressing and HER2-overexpressing breast cancers. • The addition of α to the clinicopathologic features (estrogen receptor status, progesterone receptor status, and tumor size) further improved the discriminative ability.
确定常规 DWI、连续时间随机漫步(CTRW)、分数阶微积分(FROC)和拉伸指数模型(SEM)在鉴别人表皮生长因子受体 2(HER2)状态的乳腺癌(BC)中的价值。
本前瞻性研究纳入了 158 名接受 DWI、CTRW、FROC 和 SEM 检查且病理分类为 HER2 零表达组(n=10)、HER2 低表达组(n=86)和 HER2 过表达组(n=62)的女性。从四个扩散模型中得出了 9 个扩散参数,即原发肿瘤的 ADC、α、β、D、β、D、μ、α和 DDC。比较了这些扩散指标和临床病理特征在各组之间的差异。采用 logistic 回归确定用于分类 HER2 表达状态的最佳扩散指标和临床病理变量。采用受试者工作特征(ROC)曲线评估其鉴别能力。
HER2 低表达组和 HER2 过表达组之间的雌二醇受体(ER)状态、孕激素受体(PR)状态和肿瘤大小存在差异(p<0.001 至 p=0.009)。HER2 低表达组的 α、D、β、D、μ、α和 DDC 明显低于 HER2 过表达组(p<0.001 至 p=0.01)。进一步的多变量 logistic 回归分析表明,α 是唯一具有较高曲线下面积(AUC)的最佳鉴别指标,AUC 高于 ADC(0.802 比 0.610,p<0.05);将 ER 状态、PR 状态和肿瘤大小添加到 α 中,可使 AUC 提高至 0.877。
α 可有助于鉴别 HER2 低表达和 HER2 过表达的 BC。
人表皮生长因子受体 2(HER2)-低表达的乳腺癌(BC)可能也受益于 HER2 靶向治疗。HER2 低表达 BC 或 HER2 过表达 BC 的预测对适当的管理至关重要。先进的连续时间随机漫步扩散 MRI 为解决这一临床问题提供了一种解决方案。
HER2 低表达 BC 的α、D、β、D、μ、α和 DDC 值均低于 HER2 过表达乳腺癌。
α 是鉴别 HER2 低表达和 HER2 过表达乳腺癌的最佳扩散指标(AUC=0.802)。
将α与临床病理特征(雌激素受体状态、孕激素受体状态和肿瘤大小)相结合,进一步提高了鉴别能力。