Suppr超能文献

用于可解释且高效的医学时间序列处理的稀疏学习核。

Sparse learned kernels for interpretable and efficient medical time series processing.

作者信息

Chen Sully F, Guo Zhicheng, Ding Cheng, Hu Xiao, Rudin Cynthia

机构信息

Duke University School of Medicine, Durham, NC, USA.

Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.

出版信息

Nat Mach Intell. 2024 Oct;6(10):1132-1144. doi: 10.1038/s42256-024-00898-4. Epub 2024 Sep 18.

Abstract

Rapid, reliable and accurate interpretation of medical time series signals is crucial for high-stakes clinical decision-making. Deep learning methods offered unprecedented performance in medical signal processing but at a cost: they were compute intensive and lacked interpretability. We propose sparse mixture of learned kernels (SMoLK), an interpretable architecture for medical time series processing. SMoLK learns a set of lightweight flexible kernels that form a single-layer sparse neural network, providing not only interpretability but also efficiency, robustness and generalization to unseen data distributions. We introduce parameter reduction techniques to reduce the size of SMoLK networks and maintain performance. We test SMoLK on two important tasks common to many consumer wearables: photoplethysmography artefact detection and atrial fibrillation detection from single-lead electrocardiograms. We find that SMoLK matches the performance of models orders of magnitude larger. It is particularly suited for real-time applications using low-power devices, and its interpretability benefits high-stakes situations.

摘要

对医学时间序列信号进行快速、可靠且准确的解读对于高风险临床决策至关重要。深度学习方法在医学信号处理中展现出了前所未有的性能,但代价是:它们计算量大且缺乏可解释性。我们提出了学习内核的稀疏混合(SMoLK),这是一种用于医学时间序列处理的可解释架构。SMoLK学习一组轻量级的灵活内核,这些内核构成一个单层稀疏神经网络,不仅提供可解释性,还具备效率、鲁棒性以及对未见数据分布的泛化能力。我们引入参数缩减技术来减小SMoLK网络的规模并保持性能。我们在许多消费级可穿戴设备常见的两项重要任务上测试了SMoLK:光电容积脉搏波描记术伪像检测和单导联心电图房颤检测。我们发现SMoLK与规模大几个数量级的模型性能相当。它特别适用于使用低功耗设备的实时应用,其可解释性在高风险情况下具有优势。

相似文献

1
Sparse learned kernels for interpretable and efficient medical time series processing.
Nat Mach Intell. 2024 Oct;6(10):1132-1144. doi: 10.1038/s42256-024-00898-4. Epub 2024 Sep 18.
6
123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma.
Cochrane Database Syst Rev. 2015 Sep 29;2015(9):CD009263. doi: 10.1002/14651858.CD009263.pub2.
7
Interventions to reduce harm from continued tobacco use.
Cochrane Database Syst Rev. 2016 Oct 13;10(10):CD005231. doi: 10.1002/14651858.CD005231.pub3.

本文引用的文献

1
A foundational vision transformer improves diagnostic performance for electrocardiograms.
NPJ Digit Med. 2023 Jun 6;6(1):108. doi: 10.1038/s41746-023-00840-9.
2
State-of-the-Art Deep Learning Methods on Electrocardiogram Data: Systematic Review.
JMIR Med Inform. 2022 Aug 15;10(8):e38454. doi: 10.2196/38454.
3
Explaining a series of models by propagating Shapley values.
Nat Commun. 2022 Aug 3;13(1):4512. doi: 10.1038/s41467-022-31384-3.
4
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
5
Medical deep learning-A systematic meta-review.
Comput Methods Programs Biomed. 2022 Jun;221:106874. doi: 10.1016/j.cmpb.2022.106874. Epub 2022 May 11.
6
Deep convolutional neural network-based signal quality assessment for photoplethysmogram.
Comput Biol Med. 2022 Jun;145:105430. doi: 10.1016/j.compbiomed.2022.105430. Epub 2022 Mar 22.
7
Feasibility Study of Pulse Width at Half Amplitude of Camera PPG for Contactless Blood Pressure Estimation.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:365-368. doi: 10.1109/EMBC46164.2021.9630964.
9
A Review of Wearable Multi-Wavelength Photoplethysmography.
IEEE Rev Biomed Eng. 2023;16:136-151. doi: 10.1109/RBME.2021.3121476. Epub 2023 Jan 5.
10
ECG-based machine-learning algorithms for heartbeat classification.
Sci Rep. 2021 Sep 21;11(1):18738. doi: 10.1038/s41598-021-97118-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验