Suppr超能文献

一种基础视觉变换器提高了心电图的诊断性能。

A foundational vision transformer improves diagnostic performance for electrocardiograms.

作者信息

Vaid Akhil, Jiang Joy, Sawant Ashwin, Lerakis Stamatios, Argulian Edgar, Ahuja Yuri, Lampert Joshua, Charney Alexander, Greenspan Hayit, Narula Jagat, Glicksberg Benjamin, Nadkarni Girish N

机构信息

The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

NPJ Digit Med. 2023 Jun 6;6(1):108. doi: 10.1038/s41746-023-00840-9.

Abstract

The electrocardiogram (ECG) is a ubiquitous diagnostic modality. Convolutional neural networks (CNNs) applied towards ECG analysis require large sample sizes, and transfer learning approaches for biomedical problems may result in suboptimal performance when pre-training is done on natural images. We leveraged masked image modeling to create a vision-based transformer model, HeartBEiT, for electrocardiogram waveform analysis. We pre-trained this model on 8.5 million ECGs and then compared performance vs. standard CNN architectures for diagnosis of hypertrophic cardiomyopathy, low left ventricular ejection fraction and ST elevation myocardial infarction using differing training sample sizes and independent validation datasets. We find that HeartBEiT has significantly higher performance at lower sample sizes compared to other models. We also find that HeartBEiT improves explainability of diagnosis by highlighting biologically relevant regions of the EKG vs. standard CNNs. Domain specific pre-trained transformer models may exceed the classification performance of models trained on natural images especially in very low data regimes. The combination of the architecture and such pre-training allows for more accurate, granular explainability of model predictions.

摘要

心电图(ECG)是一种广泛应用的诊断方式。应用于心电图分析的卷积神经网络(CNN)需要大量样本,并且当在自然图像上进行预训练时,针对生物医学问题的迁移学习方法可能导致性能欠佳。我们利用掩码图像建模创建了一个基于视觉的变压器模型HeartBEiT,用于心电图波形分析。我们在850万份心电图上对该模型进行了预训练,然后使用不同的训练样本大小和独立验证数据集,将其与标准CNN架构在肥厚型心肌病、低左心室射血分数和ST段抬高型心肌梗死诊断方面的性能进行了比较。我们发现,与其他模型相比,HeartBEiT在较低样本量下具有显著更高的性能。我们还发现,与标准CNN相比,HeartBEiT通过突出心电图的生物学相关区域提高了诊断的可解释性。特定领域的预训练变压器模型可能超过在自然图像上训练的模型的分类性能,尤其是在极低数据量的情况下。架构与这种预训练的结合使得模型预测具有更准确及更细致的可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd93/10244321/460ce4f1a966/41746_2023_840_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验