Suppr超能文献

心源性休克患者呼吸机相关性肺炎预测模型的开发与验证:基于MIMIC-IV数据库

Development and validation of a predictive model for ventilator-associated pneumonia in patients with cardiogenic shock: based on the MIMIC-IV database.

作者信息

Miao Yulu, Li Gaofeng, Peng Song

机构信息

Department of ICU, The Third Affiliated Hospital of Anhui Medical University, Hefei, China.

出版信息

J Thorac Dis. 2025 Jul 31;17(7):4713-4723. doi: 10.21037/jtd-2024-2038. Epub 2025 Jul 24.

Abstract

BACKGROUND

Mechanical ventilation is crucial for patients with cardiogenic shock (CS), while diagnosing ventilator-associated pneumonia (VAP) in CS patients is difficult. Therefore, there is an urgent need for an effective diagnostic model for VAP in CS. This study aims to develop an effective risk prediction model for VAP in CS patients based on clinical data.

METHODS

The study is a retrospective study conducted using the Medical Information Mart for Intensive Care IV (MIMIC-IV) dataset. Univariate and multivariate binary logistic regression analyses identified the variables for establishing a predictive model. Its clinical utility was assessed via decision curve analysis (DCA), as well as its discrimination and calibration through the concordance index (C-index) and calibration plots.

RESULTS

Among the 807 CS patients admitted to the intensive care unit (ICU), 112 developed VAP. The results of this study suggest that the duration of invasive mechanical ventilation, the length of ICU stay (ICU LOS), concomitant hepatic insufficiency, and the presence of concomitant sepsis are independent risk factors associated with the development of VAP during hospitalization. The area under the curve for the model was 0.798. In addition, the clinical data of 90 CS patients in the South District of The Third Affiliated Hospital of Anhui Medical University were retrospectively analyzed for external verification, and the area under the external validation curve was 0.783. The Hosmer-Lemeshow P=0.47 indicates that the fit is acceptable, and the calibration curve proves that the predictive model has proper discrimination and good calibration. DCA revealed that the VAP prediction nomogram proved clinically valuable when interventions were considered at a VAP probability threshold ranging from 1% to 50%.

CONCLUSIONS

We can apply the nomogram for predicting the development of VAP after admission to the ICU for patients with CS, utilizing readily accessible variables.

摘要

背景

机械通气对心源性休克(CS)患者至关重要,而诊断CS患者的呼吸机相关性肺炎(VAP)却很困难。因此,迫切需要一种针对CS患者VAP的有效诊断模型。本研究旨在基于临床数据开发一种针对CS患者VAP的有效风险预测模型。

方法

本研究是一项使用重症监护医学信息集市IV(MIMIC-IV)数据集进行的回顾性研究。单因素和多因素二元逻辑回归分析确定了用于建立预测模型的变量。通过决策曲线分析(DCA)评估其临床效用,并通过一致性指数(C指数)和校准图评估其区分度和校准度。

结果

在入住重症监护病房(ICU)的807例CS患者中,112例发生了VAP。本研究结果表明,有创机械通气时间、ICU住院时间(ICU LOS)、合并肝功能不全以及合并脓毒症是住院期间发生VAP的独立危险因素。该模型的曲线下面积为0.798。此外,对安徽医科大学第三附属医院南区90例CS患者的临床数据进行回顾性分析以进行外部验证,外部验证曲线下面积为0.783。Hosmer-Lemeshow P = 0.47表明拟合可接受,校准曲线证明预测模型具有适当的区分度和良好的校准度。DCA显示,当在1%至50%的VAP概率阈值下考虑干预措施时,VAP预测列线图具有临床价值。

结论

我们可以应用该列线图来预测CS患者入住ICU后VAP的发生情况,利用易于获取的变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/12340323/86850f074f26/jtd-17-07-4713-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验