文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

ChatGPT-4视觉模型:一种用于诊断甲状腺结节的有前景的工具。

ChatGPT-4 Vision: a promising tool for diagnosing thyroid nodules.

作者信息

Hong Dao-Rong, Huang Chun-Yan, Zhong Huo-Hu, Lyu Guo-Rong

机构信息

Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.

Department of General Practice, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.

出版信息

Front Med (Lausanne). 2025 Jul 30;12:1634976. doi: 10.3389/fmed.2025.1634976. eCollection 2025.


DOI:10.3389/fmed.2025.1634976
PMID:40809414
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12343595/
Abstract

OBJECTIVE: This study aims to evaluate the application of ChatGPT-4 Vision in the ultrasonic image analysis of thyroid nodules by comparing its diagnostic efficacy and consistency with those of sonographers. METHODS: In this prospective study, conducted in real clinical scenarios, we included 124 patients with pathologically confirmed thyroid nodules who underwent ultrasound examinations at Fujian Medical University Affiliated Second Hospital. A physician, not involved in the study, collected three ultrasound images for each nodule: the maximum cross-sectional, maximum longitudinal, and the section best representing the nodular characteristics. The images were analyzed by the primed ChatGPT-4 Vision and classified according to the 2020 Chinese Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules (C-TIRADS). Two sonographers with different qualifications (a resident physician and an attending physician) used the same images to classify the nodules according to the C-TIRADS guidelines. Using fine needle aspiration (FNA) biopsy or surgical pathology results as the gold standard, we compared the consistency and diagnostic efficacy of the primed ChatGPT-4 Vision with those of the sonographers. RESULTS: (1) ChatGPT-4 Vision diagnosed thyroid nodules with a sensitivity of 86.2%, specificity of 60.0%, and an AUC of 0.731, which was comparable to the resident's sensitivity of 85.1% (95% CI: 77.2-90.8%), specificity of 66.7% (95% CI: 53.7-77.7%), and AUC of 0.759 ( > 0.05), but lower than the attending physician's sensitivity of 97.9% (95% CI: 93.2-99.5%), specificity of 80.0% (95% CI: 67.7-88.6%), and AUC of 0.889 (95% CI: 81.5-96.4%) ( < 0.05). (2) The primed ChatGPT-4 Vision demonstrated good consistency with the resident in thyroid nodule classification (Kappa value = 0.729), though its consistency with the pathological diagnosis was lower than that of the attending physician (Kappa values of 0.457 vs. 0.816, respectively). CONCLUSION: The primed ChatGPT-4 Vision demonstrates promising clinical utility in thyroid nodule risk stratification, achieving diagnostic performance comparable to resident physicians. Its ability to standardize image analysis aligns with precision medicine goals, offering a foundation for future integration with dynamic ultrasound modalities to enhance pathological correlation.

摘要

目的:本研究旨在通过比较ChatGPT-4 Vision与超声检查医师在甲状腺结节超声图像分析中的诊断效能和一致性,评估其在甲状腺结节超声图像分析中的应用。 方法:在这项在真实临床场景中进行的前瞻性研究中,我们纳入了124例经病理证实的甲状腺结节患者,这些患者在福建医科大学附属第二医院接受了超声检查。一名未参与该研究的医生为每个结节收集了三张超声图像:最大横截面图像、最大纵截面图像以及最能代表结节特征的截面图像。由经过训练的ChatGPT-4 Vision对图像进行分析,并根据2020年《中国甲状腺结节超声恶性风险分层指南》(C-TIRADS)进行分类。两名资质不同的超声检查医师(一名住院医师和一名主治医师)使用相同的图像,根据C-TIRADS指南对结节进行分类。以细针穿刺(FNA)活检或手术病理结果作为金标准,我们比较了经过训练的ChatGPT-4 Vision与超声检查医师的一致性和诊断效能。 结果:(1)ChatGPT-4 Vision诊断甲状腺结节的灵敏度为86.2%,特异度为60.0%,曲线下面积(AUC)为0.731,与住院医师的灵敏度85.1%(95%置信区间:77.2-90.8%)、特异度66.7%(95%置信区间:53.7-77.7%)和AUC 0.759(P>0.05)相当,但低于主治医师灵敏度97.9%(95%置信区间:93.2-99.5%)、特异度80.0%(95%置信区间:67.7-88.6%)和AUC 0.889(95%置信区间:81.5-96.4%)(P<0.05)。(2)经过训练的ChatGPT-4 Vision在甲状腺结节分类方面与住院医师表现出良好的一致性(Kappa值=0.729),尽管其与病理诊断的一致性低于主治医师(Kappa值分别为0.457和0.816)。 结论:经过训练的ChatGPT-4 Vision在甲状腺结节风险分层中显示出有前景的临床应用价值,其诊断性能与住院医师相当。它标准化图像分析的能力符合精准医学目标,为未来与动态超声模式整合以增强病理相关性奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3636/12343595/216d609b0abe/fmed-12-1634976-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3636/12343595/e62daaa421dc/fmed-12-1634976-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3636/12343595/d3f4810ec14a/fmed-12-1634976-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3636/12343595/216d609b0abe/fmed-12-1634976-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3636/12343595/e62daaa421dc/fmed-12-1634976-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3636/12343595/d3f4810ec14a/fmed-12-1634976-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3636/12343595/216d609b0abe/fmed-12-1634976-g003.jpg

相似文献

[1]
ChatGPT-4 Vision: a promising tool for diagnosing thyroid nodules.

Front Med (Lausanne). 2025-7-30

[2]
Using a Large Language Model for Breast Imaging Reporting and Data System Classification and Malignancy Prediction to Enhance Breast Ultrasound Diagnosis: Retrospective Study.

JMIR Med Inform. 2025-6-11

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
Diagnostic performance of ACR-TIRADS for thyroid nodule risk stratification in pediatric patients.

Endocrine. 2025-8-12

[5]
Exploring the Potential of ChatGPT-4o in Thyroid Nodule Diagnosis Using Multi-Modality Ultrasound Imaging: Dual- vs. Triple-Modality Approaches.

Cancers (Basel). 2025-6-20

[6]
Optimizing Thyroid Nodule Management With Artificial Intelligence: Multicenter Retrospective Study on Reducing Unnecessary Fine Needle Aspirations.

JMIR Med Inform. 2025-7-30

[7]
New Thyroid Imaging Reporting and Data System (TIRADS) Based on Ultrasonography Features for Follicular Thyroid Neoplasms: A Multicenter Study.

Ultrasound Med Biol. 2025-8

[8]
Diagnostic Performance of Six Ultrasound Risk Stratification Systems for Thyroid Nodules: A Systematic Review and Network Meta-Analysis.

AJR Am J Roentgenol. 2023-6

[9]
The additive value of real-time elastography to thyroid ultrasound in detecting papillary carcinoma in nodules over 20 mm in diameter.

Endocrine. 2025-4-24

[10]
Ultrasound-Guided Fine-Needle Aspiration Biopsy Of Thyroid Nodules Smaller Than 10 mm in the Maximum Diameter: The Efficacy and Its Correlation with TIRADS Classification.

Asian Pac J Cancer Prev. 2025-5-1

本文引用的文献

[1]
ChatGPT-4's Accuracy in Estimating Thyroid Nodule Features and Cancer Risk From Ultrasound Images.

Endocr Pract. 2025-3-24

[2]
Comparison of the accuracy of GPT-4 and resident physicians in differentiating benign and malignant thyroid nodules.

Front Artif Intell. 2025-3-5

[3]
Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging.

Nat Med. 2024-5

[4]
A fully autonomous robotic ultrasound system for thyroid scanning.

Nat Commun. 2024-5-11

[5]
Major AlphaFold upgrade offers boost for drug discovery.

Nature. 2024-5

[6]
Transforming free-text radiology reports into structured reports using ChatGPT: A study on thyroid ultrasonography.

Eur J Radiol. 2024-6

[7]
Collaborative Enhancement of Consistency and Accuracy in US Diagnosis of Thyroid Nodules Using Large Language Models.

Radiology. 2024-3

[8]
Diagnostic performance of artificial intelligence-aided caries detection on bitewing radiographs: a systematic review and meta-analysis.

Jpn Dent Sci Rev. 2024-12

[9]
Challenge, integration, and change: ChatGPT and future anatomical education.

Med Educ Online. 2024-12-31

[10]
Artificial intelligence in skeletal metastasis imaging.

Comput Struct Biotechnol J. 2023-11-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索