Wei Boxiong, Zhang Xiumei, Shao Yuhong, Sun Xiuming, Chen Luzeng
Department of Ultrasound, Peking University First Hospital, Beijing, China.
Front Artif Intell. 2025 Mar 5;8:1512438. doi: 10.3389/frai.2025.1512438. eCollection 2025.
To assess the diagnostic performance of the GPT-4 model in comparison to resident physicians in distinguishing between benign and malignant thyroid nodules using ultrasound images.
This study analyzed 1,145 ultrasound images, including 632 malignant and 513 benign nodules. Both the GPT-4 model and two resident physicians independently classified the nodules using ultrasound images. The diagnostic accuracy of the resident physicians was determined by calculating the average of the individual accuracy rates of the two physicians and this was compared with the performance of the GPT-4 model.
The GPT-4 model correctly identified 367 out of 632 malignant nodules (58.07%) and 343 out of 513 benign nodules (66.86%). Resident physicians identified 467 malignant (73.89%) and 383 benign nodules (74.66%). There was a statistically significant difference in the classification of malignant nodules ( < 0.001) and benign nodules ( = 0.048) between the GPT-4 model and residents. GPT-4 performed better for larger nodules (>1 cm) at 65.38%, compared to 53.77% for smaller nodules (≤1 cm, = 0.004). The AUC for GPT-4 was 0.67, while residents achieved 0.75.
The GPT-4 model shows potential in classifying thyroid nodules, but its diagnostic accuracy remains significantly lower than that of resident physicians, particularly for smaller malignant nodules.
评估GPT-4模型与住院医师在使用超声图像区分甲状腺良恶性结节方面的诊断性能。
本研究分析了1145张超声图像,包括632个恶性结节和513个良性结节。GPT-4模型和两名住院医师分别使用超声图像对结节进行分类。通过计算两名医师各自准确率的平均值来确定住院医师的诊断准确性,并将其与GPT-4模型的性能进行比较。
GPT-4模型在632个恶性结节中正确识别出367个(58.07%),在513个良性结节中正确识别出343个(66.86%)。住院医师识别出467个恶性结节(73.89%)和383个良性结节(74.66%)。GPT-4模型与住院医师在恶性结节分类(<0.001)和良性结节分类(=0.048)上存在统计学显著差异。对于较大结节(>1厘米),GPT-4的表现更好,为65.38%,而较小结节(≤1厘米)为53.77%(=0.004)。GPT-4的AUC为0.67,而住院医师为0.75。
GPT-4模型在甲状腺结节分类方面显示出潜力,但其诊断准确性仍显著低于住院医师,尤其是对于较小的恶性结节。