由分子-等离子体耦合驱动的功能化尖端设计。

Design of functionalized tips driven by molecule-plasmon coupling.

作者信息

He Huijie, Zhen Xueyang, Li Shuang, Chen Sibing, Chen Xing

机构信息

Institute of Molecular Plus, School of Chemical Engineering and Technology, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University Tianjin 300192 P. R. China

Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 P. R. China.

出版信息

Chem Sci. 2025 Aug 4. doi: 10.1039/d5sc01013f.

Abstract

The sensitivity of plasmon-enhanced spectroscopy (PES) fundamentally arises from the near-field enhancements within plasmonic nanocavities. To further advance PES, we utilized a molecule with exciton modes that are sensitive to the excitation wavelength to functionalize the metal tip. Our findings reveal that exciton modes play a dominant role in shaping near-field patterns. Specifically, "hot spots" within the exciton mode contribute positively to the near-field enhancements, while "dark spots" provide negative contributions. The functionalized tip exhibits pronounced field gradient effects compared to the bare tip, significantly improving sensitivity and selectivity in near-field spectroscopy. Moreover, both the field enhancement and field gradient effects of the functionalized tip can be effectively tuned by adjusting the excitation energy and tilt angle. These results provide crucial insights into near-field modulation for molecules resonating with plasmonic nanocavities. The development of molecule-functionalized tips offers a promising pathway to advancing PES technology, enabling enhanced sensitivity and selectivity for molecular characterization.

摘要

表面等离子体增强光谱(PES)的灵敏度从根本上源于等离子体纳米腔体内的近场增强。为了进一步推动PES的发展,我们使用了一种具有对激发波长敏感的激子模式的分子来功能化金属尖端。我们的研究结果表明,激子模式在塑造近场图案方面起着主导作用。具体而言,激子模式内的“热点”对近场增强有正向贡献,而“暗点”则有负向贡献。与裸尖端相比,功能化尖端表现出明显的场梯度效应,显著提高了近场光谱的灵敏度和选择性。此外,通过调整激发能量和倾斜角度,可以有效地调节功能化尖端的场增强和场梯度效应。这些结果为与等离子体纳米腔共振的分子的近场调制提供了关键见解。分子功能化尖端的发展为推进PES技术提供了一条有前景的途径,能够增强分子表征的灵敏度和选择性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/12422324/a6280aa43ec3/d5sc01013f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索