Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Anal Chim Acta. 2023 May 8;1254:341086. doi: 10.1016/j.aca.2023.341086. Epub 2023 Mar 14.
Plasmon-enhanced luminescence (PEL) is a unique photophysical phenomenon in which the interaction between luminescent moieties and metal nanostructures results in a marked luminescence enhancement. PEL offers several advantages and has been extensively used to design robust biosensing platforms for luminescence-based detection and diagnostics applications, as well as for the development of many efficient bioimaging platforms, enabling high-contrast non-invasive real-time optical imaging of biological tissues, cells, and organelles with high spatial and temporal resolution. This review summarizes recent progress in the development of various PEL-based biosensors and bioimaging platforms for diverse biological and biomedical applications. Specifically, we comprehensively assessed rationally designed PEL-based biosensors that can efficiently detect biomarkers (proteins and nucleic acids) in point-of-care tests, highlighting significant improvements in the sensing performance upon the integration of PEL. In addition to discussing the merits and demerits of recently developed PEL-based biosensors on substrates or in solutions, we include a brief discussion on integrating PEL-based biosensing platforms into microfluidic devices as a promising multi-responsive detection method. The review also presents comprehensive details about the recent advances in the development of various PEL-based multi-functional (passive targeting, active targeting, and stimuli-responsive) bioimaging probes, highlighting the scope of future improvements in devising robust PEL-based nanosystems to achieve more effective diagnostic and therapeutic insights by enabling imaging-guided therapy.
等离子体增强发光(PEL)是一种独特的光物理现象,其中发光部分与金属纳米结构之间的相互作用导致发光显著增强。PEL 具有多个优势,并已广泛用于设计基于发光的检测和诊断应用的稳健生物传感平台,以及开发许多高效的生物成像平台,能够以高时空分辨率对生物组织、细胞和细胞器进行高对比度的非侵入式实时光学成像。
本综述总结了基于 PEL 的各种生物传感器和生物成像平台在各种生物和生物医学应用中的最新进展。具体而言,我们全面评估了基于合理设计的 PEL 生物传感器,这些传感器可在即时护理测试中有效地检测生物标志物(蛋白质和核酸),突出了在整合 PEL 后,传感性能得到了显著改善。除了讨论最近在基于 PEL 的生物传感器的优点和缺点外,我们还简要讨论了将基于 PEL 的生物传感平台集成到微流控设备中作为一种有前途的多响应检测方法。
本综述还全面介绍了基于 PEL 的各种多功能(被动靶向、主动靶向和刺激响应)生物成像探针的最新进展,突出了通过设计稳健的基于 PEL 的纳米系统来实现更有效的诊断和治疗见解的未来改进范围,从而实现成像引导的治疗。
Anal Chim Acta. 2023-5-8
Nanoscale Adv. 2021-4-14
Curr Opin Chem Biol. 2022-2
Acc Chem Res. 2014-1-7
Biosens Bioelectron. 2024-4-1
Luminescence. 2023-7
Chem Sci. 2025-8-4
Mater Today Bio. 2024-12-7
Front Chem. 2024-6-26
Front Chem. 2023-4-21