文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于综合生物信息学分析和机器学习探索干燥综合征外周动脉粥样硬化的潜在生物标志物和免疫细胞浸润特征

Exploration of potential biomarkers and immune cell infiltration characteristics for peripheral atherosclerosis in sjögren's syndrome based on comprehensive bioinformatics analysis and machine learning.

作者信息

Liu Chunjiang, Wang Yuan, Zhou Lina, Cai Feifei, Tang Xiaoqi, Wang Liying, Zhang Xiang

机构信息

Department of General Surgery, Division of Vascular Surgery, Shaoxing People's Hospital (The First Affiliated Hospital, Shaoxing University), Shaoxing, China.

Department of Intervention Vascular, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China.

出版信息

Front Genet. 2025 Jul 30;16:1546315. doi: 10.3389/fgene.2025.1546315. eCollection 2025.


DOI:10.3389/fgene.2025.1546315
PMID:40809841
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12343227/
Abstract

BACKGROUND: Sjögren's syndrome (SS) is an autoimmune disorder impacting exocrine glands, while peripheral atherosclerosis (PA) demonstrates a close link to inflammation. Despite a notable rise in atherosclerosis risk among SS patients in prior investigations, the precise mechanisms remain elusive. METHODS: A comprehensive analysis was conducted on seven microarray datasets (GSE7451, GSE23117, GSE143153, GSE28829, GSE100927, GSE159677, and GSE40611). The LIMMA package, in conjunction with weighted gene co-expression network analysis (WGCNA), provides a robust method for identifying differentially expressed genes (DEGs) associated with peripheral atherosclerosis (PA) in Sjögren's syndrome (SS). Subsequently, machine learning algorithms and protein-protein interaction (PPI) network analysis were employed to further investigate potential predictive genes. These findings were utilized to construct a nomogram and a receiver operating characteristic (ROC) curve, which assessed the predictive accuracy of these genes in PA patients with SS. Additionally, extensive analyses of immune cell infiltration and single-sample gene set enrichment analysis (ssGSEA) were conducted to elucidate the underlying biological mechanisms. RESULTS: Using the LIMMA package and WGCNA, 135 DEGs associated with PA in SS were identified. PPI network analysis revealed 17 candidate hub genes. The intersection of gene sets identified by three distinct machine learning algorithms highlighted CCL4, CSF1R, and MX1 as key DEGs. ROC analysis and nomogram construction demonstrated their high predictive accuracy (AUC: 0.971, 95% CI: 0.941-1.000). Analysis of immune cell infiltration showed a significant positive correlation between these hub genes and dysregulated immune cells. Additionally, ssGSEA provided critical biological insights into the progression of PA in SS. CONCLUSION: This study systematically identified three promising hub genes (CCL4, CSF1R, and MX1) and developed a nomogram for predicting PA in SS. Analysis of immune cell infiltration demonstrated that dysregulated immune cells significantly contribute to the progression of PA. Additionally, ssGSEA analysis offered important insights into the mechanisms by which SS leads to PA.

摘要

背景:干燥综合征(SS)是一种影响外分泌腺的自身免疫性疾病,而外周动脉粥样硬化(PA)与炎症密切相关。尽管先前的研究表明SS患者的动脉粥样硬化风险显著增加,但其确切机制仍不清楚。 方法:对七个微阵列数据集(GSE7451、GSE23117、GSE143153、GSE28829、GSE100927、GSE159677和GSE40611)进行了综合分析。LIMMA软件包与加权基因共表达网络分析(WGCNA)相结合,为识别干燥综合征(SS)中外周动脉粥样硬化(PA)相关的差异表达基因(DEG)提供了一种强大的方法。随后,采用机器学习算法和蛋白质-蛋白质相互作用(PPI)网络分析来进一步研究潜在的预测基因。这些结果被用于构建列线图和受试者工作特征(ROC)曲线,以评估这些基因在SS的PA患者中的预测准确性。此外,还进行了免疫细胞浸润的广泛分析和单样本基因集富集分析(ssGSEA),以阐明潜在的生物学机制。 结果:使用LIMMA软件包和WGCNA,鉴定出135个与SS中的PA相关的DEG。PPI网络分析揭示了17个候选枢纽基因。三种不同机器学习算法鉴定的基因集的交集突出显示CCL4、CSF1R和MX1为关键DEG。ROC分析和列线图构建证明了它们的高预测准确性(AUC:0.971,95%CI:0.941-1.000)。免疫细胞浸润分析显示这些枢纽基因与失调的免疫细胞之间存在显著正相关。此外,ssGSEA为SS中PA的进展提供了关键的生物学见解。 结论:本研究系统地鉴定了三个有前景的枢纽基因(CCL4、CSF1R和MX1),并开发了一种用于预测SS中PA的列线图。免疫细胞浸润分析表明,失调的免疫细胞显著促进了PA的进展。此外,ssGSEA分析为SS导致PA的机制提供了重要见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/e175c80bb6f7/fgene-16-1546315-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/9c2f0470a1dc/fgene-16-1546315-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/bc61e7ce157b/fgene-16-1546315-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/caff0c644cdb/fgene-16-1546315-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/f3286082bd90/fgene-16-1546315-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/ad63c92be2a3/fgene-16-1546315-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/9309865a1205/fgene-16-1546315-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/3367d911f85c/fgene-16-1546315-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/21c9cfadc12a/fgene-16-1546315-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/e175c80bb6f7/fgene-16-1546315-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/9c2f0470a1dc/fgene-16-1546315-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/bc61e7ce157b/fgene-16-1546315-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/caff0c644cdb/fgene-16-1546315-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/f3286082bd90/fgene-16-1546315-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/ad63c92be2a3/fgene-16-1546315-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/9309865a1205/fgene-16-1546315-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/3367d911f85c/fgene-16-1546315-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/21c9cfadc12a/fgene-16-1546315-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55f/12343227/e175c80bb6f7/fgene-16-1546315-g009.jpg

相似文献

[1]
Exploration of potential biomarkers and immune cell infiltration characteristics for peripheral atherosclerosis in sjögren's syndrome based on comprehensive bioinformatics analysis and machine learning.

Front Genet. 2025-7-30

[2]
Deciphering the transcriptomic characteristic of lactate metabolism and the immune infiltration landscape in abdominal aortic aneurysm.

Biochem Biophys Res Commun. 2025-6-14

[3]
Deciphering Shared Gene Signatures and Immune Infiltration Characteristics Between Gestational Diabetes Mellitus and Preeclampsia by Integrated Bioinformatics Analysis and Machine Learning.

Reprod Sci. 2025-5-15

[4]
Bridging aging, immunity, and atherosclerosis: novel insights into senescence-related genes.

Front Immunol. 2025-6-19

[5]
Machine learning and bioinformatics analysis to identify and validate diagnostic model associated with immune infiltration in rheumatoid arthritis.

Clin Rheumatol. 2025-6-11

[6]
Developing a Panel of Shared Susceptibility Genes as Diagnostic Biomarkers for chronic obstructive pulmonary disease and Heart Failure.

Comput Biol Med. 2025-9

[7]
Integrative machine learning and bioinformatics analysis to identify cellular senescence-related genes and potential therapeutic targets in ulcerative colitis and colorectal cancer.

Front Bioinform. 2025-7-28

[8]
Integrated analysis of uterine leiomyosarcoma and leiomyoma utilizing TCGA and GEO data: a WGCNA and machine learning approach.

Transl Cancer Res. 2025-5-30

[9]
In-depth bioinformatics analysis uncovers the crosstalk genes and immune interactions among diagnostic markers linked to natural killer cells in patients with cirrhosis and sepsis.

Clin Exp Med. 2025-8-6

[10]
Integrated Analysis of Ferroptosis- and Cellular Senescence-Related Biomarkers in Atherosclerosis Based on Machine Learning and Single-Cell Sequencing Data.

J Inflamm Res. 2025-7-15

本文引用的文献

[1]
Integrating machine learning and bioinformatics approaches for identifying novel diagnostic gene biomarkers in colorectal cancer.

Sci Rep. 2024-10-21

[2]
Primary Sjögren's syndrome independently promotes premature subclinical atherosclerosis.

RMD Open. 2024-4-24

[3]
MX1 and UBE2L6 are potential metaflammation gene targets in both diabetes and atherosclerosis.

PeerJ. 2024

[4]
Association between atherosclerosis and primary Sjogren's syndrome: A cross-sectional study.

Health Sci Rep. 2023-10-25

[5]
Identification and validation of hub genes involved in foam cell formation and atherosclerosis development bioinformatics.

PeerJ. 2023

[6]
Non-invasive diagnosis of primary Sjögren's syndrome using ultrasonography and transcriptome biomarkers.

Clin Immunol. 2023-10

[7]
GPR39 deorphanization: The long and winding road to eicosanoids and a crosstalk between GPR39 and hedgehog signaling in angiogenesis.

Proc Natl Acad Sci U S A. 2023-7-11

[8]
Screening of immune-related secretory proteins linking chronic kidney disease with calcific aortic valve disease based on comprehensive bioinformatics analysis and machine learning.

J Transl Med. 2023-6-1

[9]
Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution.

Commun Biol. 2022-10-12

[10]
Identification of immune cell infiltration and diagnostic biomarkers in unstable atherosclerotic plaques by integrated bioinformatics analysis and machine learning.

Front Immunol. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索