Xue Tianle, Chen Yunpeng, Li Xiaomeng, Zhou Zhixiang, Chen Qiyang
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom.
Front Bioinform. 2025 Jul 28;5:1599098. doi: 10.3389/fbinf.2025.1599098. eCollection 2025.
Ulcerative colitis (UC) is a chronic inflammatory condition that predisposes patients to colorectal cancer (CRC) through mechanisms that remain largely undefined. Given the pivotal role of cellular senescence in both chronic inflammation and tumorigenesis, we integrated machine learning and bioinformatics approaches to identify senescence-related biomarkers and potential therapeutic targets involved in the progression from UC to CRC.
Gene expression profiles from six GEO datasets were analyzed to identify differentially expressed genes (DEGs) using the limma package in R. Weighted gene co-expression network analysis (WGCNA) was employed to delineate modules significantly associated with UC and CRC, and the intersection of DEGs, key module genes, and senescence-related genes from the CellAge database yielded 112 candidate genes. An integrated machine learning (IML) model-utilizing 12 algorithms with 10-fold cross-validation-was constructed to pinpoint key diagnostic biomarkers. The diagnostic performance of the candidate genes was evaluated using receiver operating characteristic (ROC) analyses in both training and validation cohorts. In addition, immune cell infiltration, protein-protein interaction (PPI) networks, and drug enrichment analyses-including molecular docking-were performed to further elucidate the biological functions and therapeutic potentials of the identified genes.
Our analysis revealed significant transcriptomic alterations in UC and CRC tissues, with the turquoise module demonstrating the strongest association with disease traits. The IML approach identified five pivotal genes (ABCB1, CXCL1, TACC3, TGFβI, and VDR) that individually exhibited AUC values > 0.7, while their combined diagnostic model achieved an AUC of 0.989. Immune infiltration analyses uncovered distinct immune profiles correlating with these biomarkers, and the PPI network confirmed robust interactions among them. Furthermore, drug enrichment and molecular docking studies identified several promising therapeutic candidates targeting these senescence-related genes.
This study provides novel insights into the molecular interplay between cellular senescence and the UC-to-CRC transition. The identified biomarkers not only offer strong diagnostic potential but also represent promising targets for therapeutic intervention, paving the way for improved clinical management of UC-associated CRC.
溃疡性结肠炎(UC)是一种慢性炎症性疾病,通过很大程度上仍不明确的机制使患者易患结直肠癌(CRC)。鉴于细胞衰老在慢性炎症和肿瘤发生中都起着关键作用,我们整合了机器学习和生物信息学方法,以识别与从UC进展到CRC相关的衰老相关生物标志物和潜在治疗靶点。
使用R中的limma软件包分析来自六个GEO数据集的基因表达谱,以鉴定差异表达基因(DEG)。采用加权基因共表达网络分析(WGCNA)来描绘与UC和CRC显著相关的模块,来自CellAge数据库的DEG、关键模块基因和衰老相关基因的交集产生了112个候选基因。构建了一个整合机器学习(IML)模型,利用12种算法并进行10倍交叉验证,以确定关键诊断生物标志物。在训练和验证队列中使用受试者工作特征(ROC)分析评估候选基因的诊断性能。此外,进行了免疫细胞浸润、蛋白质-蛋白质相互作用(PPI)网络和药物富集分析(包括分子对接),以进一步阐明所鉴定基因的生物学功能和治疗潜力。
我们的分析揭示了UC和CRC组织中显著的转录组改变,绿松石模块与疾病特征的关联最强。IML方法鉴定出五个关键基因(ABCB1、CXCL1、TACC3、TGFβI和VDR),它们各自的AUC值>0.7,而它们的联合诊断模型的AUC为0.989。免疫浸润分析发现了与这些生物标志物相关的不同免疫谱,PPI网络证实了它们之间的强大相互作用。此外,药物富集和分子对接研究确定了几种针对这些衰老相关基因的有前景的治疗候选物。
本研究为细胞衰老与UC向CRC转变之间的分子相互作用提供了新的见解。所鉴定的生物标志物不仅具有强大的诊断潜力,而且代表了有前景的治疗干预靶点,为改善UC相关CRC的临床管理铺平了道路。