Suppr超能文献

基于对数的稀疏非负矩阵分解用于数据表示。

Log-based sparse nonnegative matrix factorization for data representation.

作者信息

Peng Chong, Zhang Yiqun, Chen Yongyong, Kang Zhao, Chen Chenglizhao, Cheng Qiang

机构信息

College of Computer Science and Technology, Qingdao University, China.

Department of Computer Science, Harbin Institute of Technology, China.

出版信息

Knowl Based Syst. 2022 Sep 5;251. doi: 10.1016/j.knosys.2022.109127. Epub 2022 Jun 2.

Abstract

Nonnegative matrix factorization (NMF) has been widely studied in recent years due to its effectiveness in representing nonnegative data with parts-based representations. For NMF, a sparser solution implies better parts-based representation. However, current NMF methods do not always generate sparse solutions. In this paper, we propose a new NMF method with log-norm imposed on the factor matrices to enhance the sparseness. Moreover, we propose a novel column-wisely sparse norm, named -(pseudo) norm to enhance the robustness of the proposed method. The -(pseudo) norm is invariant, continuous, and differentiable. For the regularized shrinkage problem, we derive a closed-form solution, which can be used for other general problems. Efficient multiplicative updating rules are developed for the optimization, which theoretically guarantees the convergence of the objective value sequence. Extensive experimental results confirm the effectiveness of the proposed method, as well as the enhanced sparseness and robustness.

摘要

近年来,非负矩阵分解(NMF)因其在使用基于部分的表示来表示非负数据方面的有效性而受到广泛研究。对于NMF,更稀疏的解意味着更好的基于部分的表示。然而,当前的NMF方法并不总是能生成稀疏解。在本文中,我们提出了一种新的NMF方法,该方法对因子矩阵施加对数范数以增强稀疏性。此外,我们提出了一种新颖的列方向稀疏范数,称为 -(伪)范数,以增强所提方法的鲁棒性。 -(伪)范数是不变的、连续的且可微的。对于正则化收缩问题,我们推导了一个闭式解,该解可用于其他一般问题。为优化开发了高效的乘法更新规则,从理论上保证了目标值序列的收敛。大量实验结果证实了所提方法的有效性,以及增强的稀疏性和鲁棒性。

相似文献

6
Collaborative filtering based on nonnegative/binary matrix factorization.基于非负/二元矩阵分解的协同过滤
Front Big Data. 2025 Jul 29;8:1599704. doi: 10.3389/fdata.2025.1599704. eCollection 2025.

本文引用的文献

1
Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering.用于聚类的二维半非负矩阵分解
Inf Sci (N Y). 2022 Apr;590:106-141. doi: 10.1016/j.ins.2021.12.098. Epub 2022 Jan 4.
2
Bayesian Matrix Factorization for Semibounded Data.贝叶斯矩阵分解对半界数据的应用。
IEEE Trans Neural Netw Learn Syst. 2023 Jun;34(6):3111-3123. doi: 10.1109/TNNLS.2021.3111824. Epub 2023 Jun 1.
4
6
Multiclass Nonnegative Matrix Factorization for Comprehensive Feature Pattern Discovery.用于综合特征模式发现的多类非负矩阵分解
IEEE Trans Neural Netw Learn Syst. 2019 Feb;30(2):615-629. doi: 10.1109/TNNLS.2018.2849932. Epub 2018 Jul 16.
8
Robust Structured Nonnegative Matrix Factorization for Image Representation.鲁棒结构非负矩阵分解的图像表示。
IEEE Trans Neural Netw Learn Syst. 2018 May;29(5):1947-1960. doi: 10.1109/TNNLS.2017.2691725. Epub 2017 Apr 17.
9
Robust recovery of subspace structures by low-rank representation.基于低秩表示的子空间结构鲁棒恢复。
IEEE Trans Pattern Anal Mach Intell. 2013 Jan;35(1):171-84. doi: 10.1109/TPAMI.2012.88.
10
Graph Regularized Nonnegative Matrix Factorization for Data Representation.基于图正则化的非负矩阵分解数据表示方法
IEEE Trans Pattern Anal Mach Intell. 2011 Aug;33(8):1548-60. doi: 10.1109/TPAMI.2010.231. Epub 2010 Dec 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验