Suppr超能文献

为子空间聚类保留双边视图结构信息。

Preserving bilateral view structural information for subspace clustering.

作者信息

Peng Chong, Zhang Jing, Chen Yongyong, Xing Xin, Chen Chenglizhao, Kang Zhao, Guo Li, Cheng Qiang

机构信息

College of Computer Science and Technology, Qingdao University, China.

School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), China.

出版信息

Knowl Based Syst. 2022 Dec 22;258. doi: 10.1016/j.knosys.2022.109915. Epub 2022 Sep 24.

Abstract

Subspace clustering algorithms have been found successful in various applications that involve two-dimensional data, i.e., each example of the data is a matrix. However, most of the existing methods transform the matrix-type examples to vectors in a pre-processing step, which omits and severely damages the inherent structural information of such data. In this paper, we propose a novel subspace clustering method for two-dimensional data, which is capable of extracting the most representative structural information from the data to recover the underlying grouping relationships of the data. The structural features are extracted from two views of the data and the numbers of feature spaces in both views are automatically determined by optimization. Extensive experiments confirm the effectiveness of the proposed method.

摘要

子空间聚类算法已在各种涉及二维数据的应用中取得成功,即数据的每个示例都是一个矩阵。然而,大多数现有方法在预处理步骤中将矩阵类型的示例转换为向量,这忽略并严重破坏了此类数据的固有结构信息。在本文中,我们提出了一种针对二维数据的新型子空间聚类方法,该方法能够从数据中提取最具代表性的结构信息,以恢复数据的潜在分组关系。结构特征从数据的两个视图中提取,并且两个视图中的特征空间数量通过优化自动确定。大量实验证实了所提方法的有效性。

相似文献

1
Preserving bilateral view structural information for subspace clustering.为子空间聚类保留双边视图结构信息。
Knowl Based Syst. 2022 Dec 22;258. doi: 10.1016/j.knosys.2022.109915. Epub 2022 Sep 24.
9
Measures implemented in the school setting to contain the COVID-19 pandemic.学校为控制 COVID-19 疫情而采取的措施。
Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029.

本文引用的文献

2
Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering.用于聚类的二维半非负矩阵分解
Inf Sci (N Y). 2022 Apr;590:106-141. doi: 10.1016/j.ins.2021.12.098. Epub 2022 Jan 4.
3
Learning discriminative representation for image classification.学习用于图像分类的判别性表示。
Knowl Based Syst. 2021 Dec 5;233. doi: 10.1016/j.knosys.2021.107517. Epub 2021 Sep 23.
4
Multiview Subspace Clustering Using Low-Rank Representation.基于低秩表示的多视角子空间聚类
IEEE Trans Cybern. 2022 Nov;52(11):12364-12378. doi: 10.1109/TCYB.2021.3087114. Epub 2022 Oct 17.
7
Multiview Subspace Clustering by an Enhanced Tensor Nuclear Norm.基于增强张量核范数的多视图子空间聚类
IEEE Trans Cybern. 2022 Sep;52(9):8962-8975. doi: 10.1109/TCYB.2021.3052352. Epub 2022 Aug 18.
8
9
Tensor Low-Rank Representation for Data Recovery and Clustering.用于数据恢复和聚类的张量低秩表示
IEEE Trans Pattern Anal Mach Intell. 2021 May;43(5):1718-1732. doi: 10.1109/TPAMI.2019.2954874. Epub 2021 Apr 1.
10
Scaled Simplex Representation for Subspace Clustering.用于子空间聚类的缩放单形表示法。
IEEE Trans Cybern. 2021 Mar;51(3):1493-1505. doi: 10.1109/TCYB.2019.2943691. Epub 2021 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验